Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 40(42): 6107-6113, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36115800

RESUMO

Capsular polysaccharides (CPSs), with which most pathogenic bacterial surfaces are decorated, have been used as the main components of glycoconjugate vaccines against bacterial diseases in clinical practice worldwide. Pneumococcal conjugate vaccines (PCVs) are administered globally to prevent invasive pneumococcal disease (IPD). While PCVs have played important roles in controlling IPD in all age groups, their empirical, and labor-intensive chemical conjugation yield poorly characterized, heterogeneous, and variably immunogenic vaccines, with poor immune responses in high-risk populations such as the elderly and patients with weak immune systems. We previously developed a method that bypasses the dependency of chemical conjugation and instead exploits prokaryotic glycosylation systems to produce pneumococcal conjugate vaccines. The bioconjugation platform relies on a conjugating enzyme to transfer a bacterial polysaccharide to an engineered carrier protein all within the lab safe bacterium E. coli. In these studies, we demonstrate that a serotype 8 pneumococcal bioconjugate vaccine is highly immunogenic and elicits functionally protective anti-serotype 8 antibody responses. Specifically, using multiple models we show that mice immunized with multiple doses of a serotype 8 bioconjugate vaccine elicit antibody responses that mediate opsonophagocytic killing, protect mice from systemic infection, and decrease the ability of serotype 8 pneumococci to colonize the nasopharynx and disseminate. Collectively, these studies demonstrate the utility of bioconjugation to produce efficacious pneumococcal conjugate vaccines.


Assuntos
Infecções Pneumocócicas , Vacinas Pneumocócicas , Animais , Anticorpos Antibacterianos , Proteínas de Transporte , Escherichia coli , Camundongos , Polissacarídeos Bacterianos , Vacinas Conjugadas
2.
Vaccine ; 40(6): 854-861, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34991929

RESUMO

The COVID-19 pandemic dramatically demonstrated the need for improved vaccination strategies and therapeutic responses to combat infectious diseases. However, the efficacy of vaccines has not yet been demonstrated in combination with commonly used immunosuppressive drug regimens. We sought to determine how common pharmaceutical drugs used in autoimmune disorders can alter immune responses to the SARS-CoV-2 spike protein vaccination. We treated mice with five immunosuppressant drugs (cyclophosphamide, leflunomide, methotrexate, methylprednisolone, and mycophenolate mofetil), each with various mechanisms of action prior to and following immunization with SARS-CoV-2 spike protein. We assessed the functionality of antibody responses to spike protein and compared immune cell populations in mice that received no treatment with those that received continuous or temporarily suspended immune suppressive therapy. All tested immunosuppressants significantly reduced the antibody titers in serum and functional antibody response against SARS-CoV-2 spike protein in immunized mice. Temporarily halting selected immunosuppressants (methylprednisolone and methotrexate, but not cyclophosphamide) improved antibody responses significantly. Through proof-of-principle experiments utilizing a mouse model, we demonstrated that immune suppression in autoimmune disorders through pharmaceutical treatments may impair vaccine response to SARS-CoV-2, and temporary suspension of immunosuppressant treatment may be necessary to mount an effective antibody vaccine response. This work provides feasibility for future clinical assessment of the impact of immunosuppressants on vaccine efficacy in humans.


Assuntos
Tratamento Farmacológico da COVID-19 , Preparações Farmacêuticas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Imunossupressores , Camundongos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Eficácia de Vacinas
3.
J Biol Chem ; 298(1): 101453, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838818

RESUMO

In the preparation of commercial conjugate vaccines, capsular polysaccharides (CPSs) must undergo chemical modification to generate the reactive groups necessary for covalent attachment to a protein carrier. One of the most common approaches employed for this derivatization is sodium periodate (NaIO4) oxidation of vicinal diols found within CPS structures. This procedure is largely random and structurally damaging, potentially resulting in significant changes in the CPS structure and therefore its antigenicity. Additionally, periodate activation of CPS often gives rise to heterogeneous conjugate vaccine products with variable efficacy. Here, we explore the use of an alternative agent, galactose oxidase (GOase) isolated from Fusarium sp. in a chemoenzymatic approach to generate a conjugate vaccine against Streptococcus pneumoniae. Using a colorimetric assay and NMR spectroscopy, we found that GOase generated aldehyde motifs on the CPS of S. pneumoniae serotype 14 (Pn14p) in a site-specific and reversible fashion. Direct comparison of Pn14p derivatized by either GOase or NaIO4 illustrates the functionally deleterious role chemical oxidation can have on CPS structures. Immunization with the conjugate synthesized using GOase provided a markedly improved humoral response over the traditional periodate-oxidized group. Further, functional protection was validated in vitro by measure of opsonophagocytic killing and in vivo through a lethality challenge in mice. Overall, this work introduces a strategy for glycoconjugate development that overcomes limitations previously known to play a role in the current approach of vaccine design.


Assuntos
Galactose Oxidase , Vacinas Pneumocócicas , Polissacarídeos Bacterianos , Streptococcus pneumoniae , Animais , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/imunologia , Galactose Oxidase/química , Galactose Oxidase/imunologia , Galactose Oxidase/metabolismo , Glicoconjugados , Camundongos , Vacinas Pneumocócicas/química , Vacinas Pneumocócicas/imunologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Sorogrupo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/imunologia , Vacinas Conjugadas
4.
ACS Infect Dis ; 7(11): 3111-3123, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34633812

RESUMO

Group B Streptococcus (GBS) is a leading cause of neonatal infections and invasive diseases in nonpregnant adults worldwide. Developing a protective conjugate vaccine targeting the capsule of GBS has been pursued for more than 30 years; however, it has yet to yield a licensed product. In this study, we present a novel bioconjugation platform for producing a prototype multivalent GBS conjugate vaccine and its subsequent analytical and immunological characterizations. Using a glycoengineering strategy, we generated strains of Escherichia coli that recombinantly express the type Ia, type Ib, and type III GBS capsular polysaccharides. We then combined the type Ia-, Ib-, and III-capsule-expressing E. coli strains with an engineered Pseudomonas aeruginosa exotoxin A (EPA) carrier protein and the PglS oligosaccharyltransferase. Coexpression of a GBS capsule, the engineered EPA protein, and PglS enabled the covalent attachment of the target GBS capsule to an engineered serine residue on EPA, all within the periplasm of E. coli. GBS bioconjugates were purified, analytically characterized, and evaluated for immunogenicity and functional antibody responses. This proof-of-concept study signifies the first step in the development of a next-generation multivalent GBS bioconjugate vaccine, which was validated by the production of conjugates that are able to elicit functional antibodies directed against the GBS capsule.


Assuntos
Escherichia coli , Infecções Estreptocócicas , Adulto , Anticorpos Antibacterianos , Escherichia coli/genética , Humanos , Recém-Nascido , Infecções Estreptocócicas/prevenção & controle , Streptococcus agalactiae/genética , Vacinas Combinadas
5.
mBio ; 12(3): e0080021, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061603

RESUMO

Capsular polysaccharides (CPSs) are major virulence factors that decorate the surfaces of many human bacterial pathogens. In their pure form or as glycoconjugate vaccines, CPSs are extensively used in vaccines deployed in clinical practice worldwide. However, our understanding of the structural requirements for interactions between CPSs and antibodies is limited. A longstanding model based on comprehensive observations of antibody repertoires binding to CPSs is that antibodies expressing heavy chain variable gene family 3 (VH3) predominate in these binding interactions in humans and VH3 homologs in mice. Toward understanding this highly conserved interaction, we generated a panel of mouse monoclonal antibodies (MAb) against Streptococcus pneumoniae serotype 3 CPS, determined an X-ray crystal structure of a protective MAb in complex with a hexasaccharide derived from enzymatic hydrolysis of the polysaccharide, and elucidated the structural requirements for this binding interaction. The crystal structure revealed a binding pocket containing aromatic side chains, suggesting the importance of hydrophobicity in the interaction. Through mutational analysis, we determined the amino acids that are critical in carbohydrate binding. Through elucidating the structural and functional properties of a panel of murine MAbs, we offer an explanation for the predominant use of the human VH3 gene family in antibodies against CPSs with implications in knowledge-based vaccine design. IMPORTANCE Infectious diseases caused by pathogenic bacteria are a major threat to human health. Capsular polysaccharides (CPSs) of many pathogenic bacteria have been used as the main components of glycoconjugate vaccines against bacterial diseases in clinical practice worldwide, with various degrees of success. Immunization with a glycoconjugate vaccine elicits T cell help for B cells that produce IgG antibodies to the CPS. Thus, it is important to develop an in-depth understanding of the interactions of carbohydrate epitopes with the antibodies. Structural characterization of the ligand binding of polysaccharide-specific antibodies laid out in this study may have fundamental biological implications for our comprehension of how the humoral immune system recognizes polysaccharide antigens, and in future knowledge-based vaccine design.


Assuntos
Anticorpos Antibacterianos/imunologia , Cápsulas Bacterianas/química , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/metabolismo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/imunologia , Animais , Anticorpos Monoclonais , Cápsulas Bacterianas/classificação , Cápsulas Bacterianas/imunologia , Cristalização , Feminino , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Modelos Estruturais , Polissacarídeos Bacterianos/química , Sorogrupo , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/patogenicidade , Vacinação
6.
Infect Immun ; 89(5)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33649050

RESUMO

Streptococcus pneumoniae remains a leading cause of bacterial pneumonia despite the widespread use of vaccines. While vaccines are effective at reducing the incidence of most serotypes included in vaccines, a rise in infection due to nonvaccine serotypes and moderate efficacy against some vaccine serotypes have contributed to high disease incidence. Additionally, numerous isolates of S. pneumoniae are antibiotic or multidrug resistant. Several conserved pneumococcal proteins prevalent in the majority of serotypes have been examined for their potential as vaccines in preclinical and clinical trials. An additional, yet-unexplored tool for disease prevention and treatment is the use of human monoclonal antibodies (MAbs) targeting conserved pneumococcal proteins. Here, we isolated the first human MAbs (PhtD3, PhtD6, PhtD7, PhtD8, and PspA16) against the pneumococcal histidine triad protein (PhtD) and the pneumococcal surface protein A (PspA), two conserved and protective antigens. MAbs to PhtD target diverse epitopes on PhtD, and MAb PspA16 targets the N-terminal segment of PspA. The PhtD-specific MAbs bind to multiple serotypes, while MAb PspA16 serotype breadth is limited. MAbs PhtD3 and PhtD8 prolong the survival of mice infected with pneumococcal serotype 3. Furthermore, MAb PhtD3 prolongs the survival of mice in intranasal and intravenous infection models with pneumococcal serotype 4 and in mice infected with pneumococcal serotype 3 when administered 24 h after pneumococcal infection. All PhtD and PspA MAbs demonstrate opsonophagocytic activity, suggesting a potential mechanism of protection. Our results identify new human MAbs for pneumococcal disease prevention and treatment and identify epitopes on PhtD and PspA recognized by human B cells.


Assuntos
Anticorpos Monoclonais/farmacologia , Interações Hospedeiro-Patógeno/imunologia , Hidrolases/antagonistas & inibidores , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/imunologia , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Relação Dose-Resposta Imunológica , Epitopos/imunologia , Humanos , Hidrolases/imunologia , Ligação Proteica , Sorogrupo
7.
J Bacteriol ; 203(7)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33468592

RESUMO

The pneumococcal serine-rich repeat protein (PsrP) is a high-molecular-weight, glycosylated adhesin that promotes the attachment of Streptococcus pneumoniae to host cells. PsrP, its associated glycosyltransferases (GTs), and dedicated secretion machinery are encoded in a 37-kb genomic island that is present in many invasive clinical isolates of S. pneumoniae PsrP has been implicated in establishment of lung infection in murine models, although specific roles of the PsrP glycans in disease progression or bacterial physiology have not been elucidated. Moreover, enzymatic specificities of associated glycosyltransferases are yet to be fully characterized. We hypothesized that the glycosyltransferases that modify PsrP are critical for the adhesion properties and infectivity of S. pneumoniae Here, we characterize the putative S. pneumoniaepsrP locus glycosyltransferases responsible for PsrP glycosylation. We also begin to elucidate their roles in S. pneumoniae virulence. We show that four glycosyltransferases within the psrP locus are indispensable for S. pneumoniae biofilm formation, lung epithelial cell adherence, and establishment of lung infection in a mouse model of pneumococcal pneumonia.IMPORTANCE PsrP has previously been identified as a necessary virulence factor for many serotypes of S. pneumoniae and studied as a surface glycoprotein. Thus, studying the effects on virulence of each glycosyltransferase (GT) that builds the PsrP glycan is of high importance. Our work elucidates the influence of GTs in vivo We have identified at least four GTs that are required for lung infection, an indication that it is worthwhile to consider glycosylated PsrP as a candidate for serotype-independent pneumococcal vaccine design.


Assuntos
Proteínas de Bactérias/metabolismo , Glicosiltransferases/metabolismo , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/patogenicidade , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Animais , Proteínas de Bactérias/genética , Feminino , Glicosiltransferases/genética , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Virulência
8.
Adv Funct Mater ; 31(7)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35822179

RESUMO

Cancer-associated fibroblasts (CAFs) are present in many types of tumors and play a pivotal role in tumor progression and immunosuppression. Fibroblast-activation protein (FAP), which is overexpressed on CAFs, has been indicated as a universal tumor target. However, FAP expression is not restricted to tumors, and systemic treatment against FAP often causes severe side effects. To solve this problem, a photodynamic therapy (PDT) approach was developed based on ZnF16Pc (a photosensitizer)-loaded and FAP-specific single chain variable fragment (scFv)-conjugated apoferritin nanoparticles, or αFAP-Z@FRT. αFAP-Z@FRT PDT efficiently eradicates CAFs in tumors without inducing systemic toxicity. When tested in murine 4T1 models, the PDT treatment elicits anti-cancer immunity, causing suppression of both primary and distant tumors, i.e. abscopal effect. Treatment efficacy is enhanced when αFAP-Z@FRT PDT is used in combination with anti-PD1 antibodies. Interestingly, it is found that the PDT treatment not only elicits a cellular immunity against cancer cells, but also stimulates an anti-CAFs immunity. This is supported by an adoptive cell transfer study, where T cells taken from 4T1-tumor-bearing animals treated with αFAP PDT retard the growth of A549 tumors established on nude mice. Overall, our approach is unique for permitting site-specific eradication of CAFs and inducing a broad spectrum anti-cancer immunity.

9.
Pharm Res ; 37(12): 236, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140159

RESUMO

PURPOSE: Streptococcus pneumoniae (Spn) serotype 3 (Spn3) is considered one of the most virulent serotypes with resistance to conventional vaccine and treatment regimens. Pn3Pase is a glycoside hydrolase that we have previously shown to be highly effective in degrading the capsular polysaccharide of type 3 Spn, sensitizing it to host immune clearance. To begin assessing the value and safety of this enzyme for future clinical studies, we investigated the effects of high doses of Pn3Pase on host cells and immune system. METHODS: We assessed the enzyme's catalytic activity following administration in mice, and performed septic infection models to determine if prior administration of the enzyme inhibited repeat treatments of Spn3-challenged mice. We assessed immune populations in mouse tissues following administration of the enzyme, and tested Pn3Pase toxicity on other mammalian cell types in vitro. RESULTS: Repeated administration of the enzyme in vivo does not prevent efficacy of the enzyme in promoting bacterial clearance following bacterial challenge, with insignificant antibody response generated against the enzyme. Immune homeostasis is maintained following high-dose treatment with Pn3Pase, and no cytotoxic effects were observed against mammalian cells. CONCLUSIONS: These data indicate that Pn3Pase has potential as a therapy against Spn3. Further development as a drug product could overcome a great hurdle of pneumococcal infections.


Assuntos
Proteínas de Bactérias/farmacologia , Glicosídeo Hidrolases/farmacologia , Paenibacillus/enzimologia , Infecções Pneumocócicas/tratamento farmacológico , Streptococcus pneumoniae/efeitos dos fármacos , Animais , Cápsulas Bacterianas/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/uso terapêutico , Modelos Animais de Doenças , Feminino , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/uso terapêutico , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Infecções Pneumocócicas/microbiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Streptococcus pneumoniae/isolamento & purificação
10.
Cancer Res ; 80(15): 3145-3156, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32554751

RESUMO

Although accumulation of myeloid-derived suppressor cells (MDSC) is a hallmark of cancer, the underlying mechanism of this accumulation within the tumor microenvironment remains incompletely understood. We report here that TNFα-RIP1-mediated necroptosis regulates accumulation of MDSCs. In tumor-bearing mice, pharmacologic inhibition of DNMT with the DNA methyltransferease inhibitor decitabine (DAC) decreased MDSC accumulation and increased activation of antigen-specific cytotoxic T lymphocytes. DAC-induced decreases in MDSC accumulation correlated with increased expression of the myeloid cell lineage-specific transcription factor IRF8 in MDSCs. However, DAC also suppressed MDSC-like cell accumulation in IRF8-deficient mice, indicating that DNA methylation may regulate MDSC survival through an IRF8-independent mechanism. Instead, DAC decreased MDSC accumulation by increasing cell death via disrupting DNA methylation of RIP1-dependent targets of necroptosis. Genome-wide DNA bisulfite sequencing revealed that the Tnf promoter was hypermethylated in tumor-induced MDSCs in vivo. DAC treatment dramatically increased TNFα levels in MDSC in vitro, and neutralizing TNFα significantly increased MDSC accumulation and tumor growth in tumor-bearing mice in vivo. Recombinant TNFα induced MDSC cell death in a dose- and RIP1-dependent manner. IL6 was abundantly expressed in MDSCs in tumor-bearing mice and patients with human colorectal cancer. In vitro, IL6 treatment of MDSC-like cells activated STAT3, increased expression of DNMT1 and DNMT3b, and enhanced survival. Overall, our findings reveal that MDSCs establish a STAT3-DNMT epigenetic axis, regulated by autocrine IL6, to silence TNFα expression. This results in decreased TNFα-induced and RIP1-dependent necroptosis to sustain survival and accumulation. SIGNIFICANCE: These findings demonstrate that targeting IL6 expression or function represent potentially effective approaches to suppress MDSC survival and accumulation in the tumor microenvironment.


Assuntos
Comunicação Autócrina/efeitos dos fármacos , Interleucina-6/farmacologia , Células Supressoras Mieloides/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Supressoras Mieloides/fisiologia , Necroptose/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , DNA Metiltransferase 3B
11.
Nat Commun ; 11(1): 2550, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439962

RESUMO

The inherent molecular complexity of human pathogens requires that mammals evolved an adaptive immune system equipped to handle presentation of non-conventional MHC ligands derived from disease-causing agents, such as HIV-1 envelope (Env) glycoprotein. Here, we report that a CD4+ T cell repertoire recognizes a glycopeptide epitope on gp120 presented by MHCII pathway. This glycopeptide is strongly immunogenic in eliciting glycan-dependent cellular and humoral immune responses. The glycopeptide specific CD4+ T cells display a prominent feature of Th2 and Th17 differentiation and exert high efficacy and potency to help Env trimer humoral immune responses. Glycopeptide-induced CD4+ T cell response prior to Env trimer immunization elicits neutralizing antibody development and production of antibodies facilitating uptake of immunogens by antigen-presenting cells. Our identification of gp120 glycopeptide-induced, T cell-specific immune responses offers a foundation for developing future knowledge-based vaccines that elicit strong and long-lasting protective immune responses against HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Imunidade Humoral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Citocinas/metabolismo , Epitopos de Linfócito T/química , Glicopeptídeos/química , Glicopeptídeos/imunologia , Anticorpos Anti-HIV/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade Celular , Imunização , Camundongos , Polissacarídeos/imunologia , Células Th17/imunologia , Células Th2/imunologia
12.
Proc Natl Acad Sci U S A ; 117(3): 1280-1282, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31907319

RESUMO

Nucleic acid vaccines introduce the genetic materials encoding antigenic proteins into host cells. If these proteins are directed into the secretory pathway with a signal/leader sequence, they will be exposed to the host's glycosylation machinery, and, if their amino acid sequences contain consensus sequons for N-linked glycosylation, they may become glycosylated. The presence of host glycans on the proteins of microbial origin may prevent a strong protective immune response either through hindering access to key epitopes by lymphocytes or through altering immune responses by binding to immunoregulatory glycan-binding receptors on immune cells. Ag85A expressed by Mycobacterium tuberculosis (Mtb) is a bacterial surface protein that is commonly used in nucleic acid vaccines in multiple clinical trials. Here we show that, when Ag85A is expressed in mammalian cells, it is glycosylated, does not induce a strong humoral immune response in mice, and does not activate Ag85A-specific lymphocytes as highly as Ag85A natively expressed by the bacterium. Our study indicates that host glycosylation of the vaccine target can impede its antigenicity and immunogenicity. Glycosylation of the antigenic protein targets therefore must be carefully evaluated in designing nucleic acid vaccines.


Assuntos
Aciltransferases/imunologia , Antígenos de Bactérias/imunologia , Imunogenicidade da Vacina , Processamento de Proteína Pós-Traducional , Vacinas contra a Tuberculose/imunologia , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Glicosilação , Células HEK293 , Humanos , Linfócitos/imunologia , Camundongos
13.
J Vis Exp ; (146)2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31009013

RESUMO

A key aspect of the immune response to bacterial colonization of the host is phagocytosis. An opsonophagocytic killing assay (OPKA) is an experimental procedure in which phagocytic cells are co-cultured with bacterial units. The immune cells will phagocytose and kill the bacterial cultures in a complement-dependent manner. The efficiency of the immune-mediated cell killing is dependent on a number of factors and can be used to determine how different bacterial cultures compare with regard to resistance to cell death. In this way, the efficacy of potential immune-based therapeutics can be assessed against specific bacterial strains and/or serotypes. In this protocol, we describe a simplified OPKA that utilizes basic culture conditions and cell counting to determine bacterial cell viability after co-culture with treatment conditions and HL-60 immune cells. This method has been successfully utilized with a number of different pneumococcal serotypes, capsular and acapsular strains, and other bacterial species. The advantages of this OPKA protocol are its simplicity, versatility (as this assay is not limited to antibody treatments as opsonins), and minimization of time and reagents to assess basic experimental groups.


Assuntos
Bactérias/imunologia , Bioensaio , Proteínas Opsonizantes/metabolismo , Fagocitose , Sobrevivência Celular/imunologia , Células HL-60 , Humanos
14.
J Clin Invest ; 128(12): 5549-5560, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30395540

RESUMO

Despite breakthroughs in immune checkpoint inhibitor (ICI) immunotherapy, not all human cancers respond to ICI immunotherapy and a large fraction of patients with the responsive types of cancers do not respond to current ICI immunotherapy. This clinical conundrum suggests that additional immune checkpoints exist. We report here that interferon regulatory factor 8 (IRF8) deficiency led to impairment of cytotoxic T lymphocyte (CTL) activation and allograft tumor tolerance. However, analysis of chimera mice with competitive reconstitution of WT and IRF8-KO bone marrow cells as well as mice with IRF8 deficiency only in T cells indicated that IRF8 plays no intrinsic role in CTL activation. Instead, IRF8 functioned as a repressor of osteopontin (OPN), the physiological ligand for CD44 on T cells, in CD11b+Ly6CloLy6G+ myeloid cells and OPN acted as a potent T cell suppressor. IRF8 bound to the Spp1 promoter to repress OPN expression in colon epithelial cells, and colon carcinoma exhibited decreased IRF8 and increased OPN expression. The elevated expression of OPN in human colon carcinoma was correlated with decreased patient survival. Our data indicate that myeloid and tumor cell-expressed OPN acts as an immune checkpoint to suppress T cell activation and confer host tumor immune tolerance.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/imunologia , Receptores de Hialuronatos/imunologia , Ativação Linfocitária , Proteínas de Neoplasias/imunologia , Osteopontina/imunologia , Evasão Tumoral , Animais , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Humanos , Receptores de Hialuronatos/genética , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas de Neoplasias/genética , Osteopontina/genética
15.
Infect Immun ; 86(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29866907

RESUMO

Despite a century of investigation, Streptococcus pneumoniae remains a major human pathogen, causing a number of diseases, such as pneumonia, meningitis, and otitis media. Like many encapsulated pathogens, the capsular polysaccharide (CPS) of S. pneumoniae is a critical component for colonization and virulence in mammalian hosts. This study aimed to evaluate the protective role of a glycoside hydrolase, Pn3Pase, targeting the CPS of type 3 S. pneumoniae, which is one of the most virulent serotypes. We have assessed the ability of Pn3Pase to degrade the capsule on a live type 3 strain. Through in vitro assays, we observed that Pn3Pase treatment increases the bacterium's susceptibility to phagocytosis by macrophages and complement-mediated killing by neutrophils. We have demonstrated that in vivo Pn3Pase treatment reduces nasopharyngeal colonization and protects mice from sepsis caused by type 3 S. pneumoniae Due to the increasing shifts in serotype distribution, the rise in drug-resistant strains, and poor immune responses to vaccine-included serotypes, it is necessary to investigate approaches to combat pneumococcal infections. This study evaluates the interaction of pneumococcal CPS with the host at molecular, cellular, and systemic levels and offers an alternative therapeutic approach for diseases caused by S. pneumoniae through enzymatic hydrolysis of the CPS.


Assuntos
Cápsulas Bacterianas/metabolismo , Glicosídeo Hidrolases/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Fagocitose/fisiologia , Infecções Pneumocócicas/fisiopatologia , Polissacarídeos Bacterianos/metabolismo , Streptococcus pneumoniae/metabolismo , Animais , Humanos , Hidrólise , Camundongos
16.
J Immunol ; 199(2): 598-603, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28566369

RESUMO

Most pathogenic bacteria express surface carbohydrates called capsular polysaccharides (CPSs). CPSs are important vaccine targets because they are easily accessible and recognizable by the immune system. However, CPS-specific adaptive humoral immune responses can only be achieved by the covalent conjugation of CPSs with carrier proteins to produce glycoconjugate vaccines. We previously described a mechanism by which a model glycoconjugate vaccine can activate the adaptive immune system and demonstrated that the mammalian CD4+ T cell repertoire contains a population of carbohydrate-specific T cells. In this study, we use glycoconjugates of type 3 Streptococcus pneumoniae CPS (Pn3P) to assess whether the carbohydrate-specific adaptive immune response exemplified in our previous study can be applied to the conjugates of this lethal pathogen. In this article, we provide evidence for the functional roles of Pn3P-specific CD4+ T cells utilizing mouse immunization schemes that induce Pn3P-specific IgG responses in a carbohydrate-specific T cell-dependent manner.


Assuntos
Cápsulas Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Glicoconjugados/imunologia , Imunidade Humoral , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Imunidade Adaptativa , Animais , Cápsulas Bacterianas/química , Linfócitos T CD4-Positivos/metabolismo , Carboidratos/imunologia , Feminino , Glicoconjugados/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Streptococcus pneumoniae/patogenicidade , Vacinação , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia
17.
Cancer Res ; 77(11): 2834-2843, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381543

RESUMO

Inducible nitric oxide synthase (iNOS) generates nitric oxide (NO) in myeloid cells that acts as a defense mechanism to suppress invading microorganisms or neoplastic cells. In tumor-bearing mice, elevated iNOS expression is a hallmark of myeloid-derived suppressor cells (MDSC). MDSCs use NO to nitrate both the T-cell receptor and STAT1, thus inhibiting T-cell activation and the antitumor immune response. The molecular mechanisms underlying iNOS expression and regulation in tumor-induced MDSCs are unknown. We report here that deficiency in IRF8 results in diminished iNOS expression in both mature CD11b+Gr1- and immature CD11b+Gr1+ myeloid cells in vivo Strikingly, although IRF8 was silenced in tumor-induced MDSCs, iNOS expression was significantly elevated in tumor-induced MDSCs, suggesting that the expression of iNOS is regulated by an IRF8-independent mechanism under pathologic conditions. Furthermore, tumor-induced MDSCs exhibited diminished STAT1 and NF-κB Rel protein levels, the essential inducers of iNOS in myeloid cells. Instead, tumor-induced MDSCs showed increased SETD1B expression as compared with their cellular equivalents in tumor-free mice. Chromatin immunoprecipitation revealed that H3K4me3, the target of SETD1B, was enriched at the nos2 promoter in tumor-induced MDSCs, and inhibition or silencing of SETD1B diminished iNOS expression in tumor-induced MDSCs. Our results show how tumor cells use the SETD1B-H3K4me3 epigenetic axis to bypass a normal role for IRF8 expression in activating iNOS expression in MDSCs when they are generated under pathologic conditions. Cancer Res; 77(11); 2834-43. ©2017 AACR.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Células Supressoras Mieloides/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo
18.
J Natl Cancer Inst ; 109(6)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28131992

RESUMO

BACKGROUND: Pancreatic cancer is one of the cancers where anti-PD-L1/PD-1 immunotherapy has been unsuccessful. What confers pancreatic cancer resistance to checkpoint immunotherapy is unknown. The aim of this study is to elucidate the underlying mechanism of PD-L1 expression regulation in the context of pancreatic cancer immune evasion. METHODS: Pancreatic cancer mouse models and human specimens were used to determine PD-L1 and PD-1 expression and cancer immune evasion. Histone methyltransferase inhibitors, RNAi, and overexpression were used to elucidate the underlying molecular mechanism of PD-L1 expression regulation. All statistical tests were two-sided. RESULTS: PD-L1 is expressed in 60% to 90% of tumor cells in human pancreatic carcinomas and in nine of 10 human pancreatic cancer cell lines. PD-1 is expressed in 51.2% to 52.1% of pancreatic tumor-infiltrating cytotoxic T lymphocytes (CTLs). Tumors grow statistically significantly faster in FasL-deficient mice than in wild-type mice (P = .03-.001) and when CTLs are neutralized (P = .03-<.001). H3K4 trimethylation (H3K4me3) is enriched in the cd274 promoter in pancreatic tumor cells. MLL1 directly binds to the cd274 promoter to catalyze H3K4me3 to activate PD-L1 transcription in tumor cells. Inhibition or silencing of MLL1 decreases the H3K4me3 level in the cd274 promoter and PD-L1 expression in tumor cells. Accordingly, inhibition of MLL1 in combination with anti-PD-L1 or anti-PD-1 antibody immunotherapy effectively suppresses pancreatic tumor growth in a FasL- and CTL-dependent manner. CONCLUSIONS: The Fas-FasL/CTLs and the MLL1-H3K4me3-PD-L1 axis play contrasting roles in pancreatic cancer immune surveillance and evasion. Targeting the MLL1-H3K4me3 axis is an effective approach to enhance the efficacy of checkpoint immunotherapy against pancreatic cancer.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma/metabolismo , Carcinoma/terapia , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Receptor de Morte Celular Programada 1/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/análise , Antígeno B7-H1/imunologia , Carcinoma/genética , Carcinoma/imunologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética , Proteína Ligante Fas/genética , Feminino , Histona-Lisina N-Metiltransferase/análise , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Humanos , Imunoterapia , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/análise , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Proteína de Leucina Linfoide-Mieloide/genética , Transplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Piperazinas/farmacologia , Receptor de Morte Celular Programada 1/análise , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Linfócitos T Citotóxicos/química , Evasão Tumoral , Microambiente Tumoral/imunologia
19.
J Vis Exp ; (114)2016 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-27584043

RESUMO

Metastasis is the primary cause of mortality of breast cancer patients. The mechanism underlying cancer cell metastasis, including breast cancer metastasis, is largely unknown and is a focus in cancer research. Various breast cancer spontaneous metastasis mouse models have been established. Here, we report a simplified procedure to establish orthotopic transplanted breast cancer primary tumor and resultant spontaneous metastasis that mimic human breast cancer metastasis. Combined with the bioluminescence live tumor imaging, this mouse model allows tumor growth and progression kinetics to be monitored and quantified. In this model, a low dose (1 x 10(4) cells) of 4T1-Luc breast cancer cells was injected into BALB/c mouse mammary fat pad using a tuberculin syringe. Mice were injected with luciferin and imaged at various time points using a bioluminescent imaging system. When the primary tumors grew to the size limit as in the IACUC-approved protocol (approximately 30 days), mice were anesthetized under constant flow of 2% isoflurane and oxygen. The tumor area was sterilized with 70% ethanol. The mouse skin around the tumor was excised to expose the tumor which was removed with a pair of sterile scissors. Removal of the primary tumor extends the survival of the 4T-1 tumor-bearing mice for one month. The mice were then repeatedly imaged for metastatic tumor spreading to distant organs. Therapeutic agents can be administered to suppress tumor metastasis at this point. This model is simple and yet sensitive in quantifying breast cancer cell growth in the primary site and progression kinetics to distant organs, and thus is an excellent model for studying breast cancer growth and progression, and for testing anti-metastasis therapeutic and immunotherapeutic agents in vivo.


Assuntos
Neoplasias da Mama/patologia , Modelos Animais de Doenças , Metástase Neoplásica , Animais , Mama , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C
20.
Oncotarget ; 7(48): 78698-78712, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27659530

RESUMO

The chemotherapeutic agent 5-Fluorouracil (5-FU) is the most commonly used drug for patients with advanced colon cancer. However, development of resistance to 5-FU is inevitable in almost all patients. The mechanism by which colon cancer develops 5-FU resistance is still unclear. One recently proposed theory is that cancer stem-like cells underlie colon cancer 5-FU resistance, but the phenotypes of 5-FU-resistant colon cancer stem cells are still controversial. We report here that 5-FU treatment selectively enriches a subset of CD133+ colon cancer cells in vitro. 5-FU chemotherapy also increases CD133+ tumor cells in human colon cancer patients. However, sorted CD133+ colon cancer cells exhibit no increased resistance to 5-FU, and CD133 levels exhibit no correlation with colon cancer patient survival or cancer recurrence. Genome-wide analysis of gene expression between sorted CD133+ colon cancer cells and 5-FU-selected colon cancer cells identifies 207 differentially expressed genes. CD24 is one of the genes whose expression level is lower in the CD133+ and 5-FU-resistant colon cancer cells as compared to CD133+ and 5-FU-sensitive colon cancer cells. Consequently, CD133+CD24lo cells exhibit decreased sensitivity to 5-FU. Therefore, we determine that CD133+CD24lo phenotype defines 5-FU-resistant human colon cancer stem cell-like cells.


Assuntos
Antígeno AC133/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Antígeno CD24/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Antígeno AC133/genética , Aldeído Desidrogenase/metabolismo , Antígeno CD24/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...