Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2762: 123-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315363

RESUMO

Glycoproteins result from post-translational modification of proteins by glycans attached to certain side chains, with possible heterogeneity due to different structures being possible at the same glycosylation site.In contrast to the mammalian systems, analysis of invertebrate glycans presents a challenge in analysis as there exist unfamiliar epitopes and a high degree of structural and isomeric variation between different species-Caenorhabditis elegans is no exception. Simple screening using lectins and antibodies can yield hints regarding which glycan epitopes are present in wild-type and mutant strains, but detailed analysis is necessary for determining more exact glycomic information. Here, our analytical approach is to analyze N- and O-glycans involving "off-line" RP-HPLC MALDI-TOF MS/MS. Enrichment and labeling steps facilitate the analysis of single structures and provide isomeric separation. Thereby, the "simple" worm expresses over 200 N-glycan structures varying depending on culture conditions or the genetic background.


Assuntos
Caenorhabditis , Espectrometria de Massas em Tandem , Animais , Glicosilação , Glicoproteínas/química , Caenorhabditis elegans/genética , Polissacarídeos/química , Epitopos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Mamíferos
2.
Mol Cell Proteomics ; 23(2): 100711, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182041

RESUMO

Glycans are key to host-pathogen interactions, whereby recognition by the host and immunomodulation by the pathogen can be mediated by carbohydrate binding proteins, such as lectins of the innate immune system, and their glycoconjugate ligands. Previous studies have shown that excretory-secretory products of the porcine nematode parasite Trichuris suis exert immunomodulatory effects in a glycan-dependent manner. To better understand the mechanisms of these interactions, we prepared N-glycans from T. suis and both analyzed their structures and used them to generate a natural glycan microarray. With this array, we explored the interactions of glycans with C-type lectins, C-reactive protein, and sera from T. suis-infected pigs. Glycans containing LacdiNAc and phosphorylcholine-modified glycans were associated with the highest binding by most of these proteins. In-depth analysis revealed not only fucosylated LacdiNAc motifs with and without phosphorylcholine moieties but phosphorylcholine-modified mannose and N-acetylhexosamine-substituted fucose residues, in the context of maximally tetraantennary N-glycan scaffolds. Furthermore, O-glycans also contained fucosylated motifs. In summary, the glycans of T. suis are recognized by both the innate and adaptive immune systems and also exhibit species-specific features distinguishing its glycome from those of other nematodes.


Assuntos
Fosforilcolina , Trichuris , Animais , Suínos , Trichuris/química , Trichuris/metabolismo , Polissacarídeos/metabolismo , Glicosilação , Sistema Imunitário/metabolismo
3.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790353

RESUMO

Glycans are key to host-pathogen interactions, whereby recognition by the host and immunomodulation by the pathogen can be mediated by carbohydrate binding proteins, such as lectins of the innate immune system, and their glycoconjugate ligands. Previous studies have shown that excretory-secretory products of the porcine nematode parasite Trichuris suis exert immunomodulatory effects in a glycan-dependent manner. To better understand the mechanisms of these interactions, we prepared N-glycans from T. suis and both analyzed their structures and used them to generate a natural glycan microarray. With this array we explored the interactions of glycans with C-type lectins, C-reactive protein and sera from T. suis infected pigs. Glycans containing LacdiNAc and phosphorylcholine-modified glycans were associated with the highest binding by most of these proteins. In-depth analysis revealed not only fucosylated LacdiNAc motifs with and without phosphorylcholine moieties, but phosphorylcholine-modified mannose and N-acetylhexosamine-substituted fucose residues, in the context of maximally tetraantennary N-glycan scaffolds. Furthermore, O-glycans also contained fucosylated motifs. In summary, the glycans of T. suis are recognized by both the innate and adaptive immune systems, and also exhibit species-specific features distinguishing its glycome from those of other nematodes.

4.
J Biol Chem ; 299(4): 103053, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813232

RESUMO

Simple organisms are often considered to have simple glycomes, but plentiful paucimannosidic and oligomannosidic glycans overshadow the less abundant N-glycans with highly variable core and antennal modifications; Caenorhabditis elegans is no exception. By use of optimized fractionation and assessing wildtype in comparison to mutant strains lacking either the HEX-4 or HEX-5 ß-N-acetylgalactosaminidases, we conclude that the model nematode has a total N-glycomic potential of 300 verified isomers. Three pools of glycans were analyzed for each strain: either PNGase F released and eluted from a reversed-phase C18 resin with either water or 15% methanol or PNGase Ar released. While the water-eluted fractions were dominated by typical paucimannosidic and oligomannosidic glycans and the PNGase Ar-released pools by glycans with various core modifications, the methanol-eluted fractions contained a huge range of phosphorylcholine-modified structures with up to three antennae, sometimes with four N-acetylhexosamine residues in series. There were no major differences between the C. elegans wildtype and hex-5 mutant strains, but the hex-4 mutant strains displayed altered sets of methanol-eluted and PNGase Ar-released pools. In keeping with the specificity of HEX-4, there were more glycans capped with N-acetylgalactosamine in the hex-4 mutants, as compared with isomeric chito-oligomer motifs in the wildtype. Considering that fluorescence microscopy showed that a HEX-4::enhanced GFP fusion protein colocalizes with a Golgi tracker, we conclude that HEX-4 plays a significant role in late-stage Golgi processing of N-glycans in C. elegans. Furthermore, finding more "parasite-like" structures in the model worm may facilitate discovery of glycan-processing enzymes occurring in other nematodes.


Assuntos
Caenorhabditis elegans , beta-N-Acetil-Hexosaminidases , Animais , Acetilgalactosamina/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Caenorhabditis elegans/metabolismo , Glicosilação , Hexosaminidases/metabolismo , Metanol , Polissacarídeos/metabolismo
5.
Mol Cell Proteomics ; 22(3): 100505, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717059

RESUMO

Caenorhabditis elegans is a frequently employed genetic model organism and has been the object of a wide range of developmental, genetic, proteomic, and glycomic studies. Here, using an off-line MALDI-TOF-MS approach, we have analyzed the N-glycans of mixed embryos and liquid- or plate-grown L4 larvae. Of the over 200 different annotatable N-glycan structures, variations between the stages as well as the mode of cultivation were observed. While the embryonal N-glycome appears less complicated overall, the liquid- and plate-grown larvae differ especially in terms of methylation of bisecting fucose, α-galactosylation of mannose, and di-ß-galactosylation of core α1,6-fucose. Furthermore, we analyzed the O-glycans by LC-electrospray ionization-MS following ß-elimination; especially the embryonal O-glycomes included a set of phosphorylcholine-modified structures, previously not shown to exist in nematodes. However, the set of glycan structures cannot be clearly correlated with levels of glycosyltransferase transcripts in developmental RNA-Seq datasets, but there is an indication for coordinated expression of clusters of potential glycosylation-relevant genes. Thus, there are still questions to be answered in terms of how and why a simple nematode synthesizes such a diverse glycome.


Assuntos
Caenorhabditis , Animais , Caenorhabditis/metabolismo , Fucose/metabolismo , Proteômica , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Caenorhabditis elegans/metabolismo , Polissacarídeos/metabolismo , Glicômica
6.
Mass Spectrom Rev ; 41(6): 945-963, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33955035

RESUMO

The approaches for analysis of N-glycans have radically altered in the last 20 years or so. Due to increased sensitivity, mass spectrometry has become the predominant method in modern glycomics. Here, we summarize recent studies showing that the improved resolution and detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has contributed greatly to the discovery of a large range of anionic and zwitterionic N-glycan structures across the different kingdoms of life, whereby MALDI-TOF MS in negative mode is less widely performed than in positive mode. However, its use enables the detection of key fragments indicative of certain sugar modifications such as sulfate, (methyl) phosphate, phosphoethanolamine, (methyl)aminoethylphosphonate, glucuronic, and sialic acid, thereby enabling certain isobaric glycan variations to be distinguished. As we also discuss in this review, complementary approaches such as negative-mode electrospray ionization-MS/MS, Fourier-transform ion cyclotron resonance MS, and ion mobility MS yield, respectively, cross-linkage fragments, high accuracy masses, and isomeric information, thus adding other components to complete the jigsaw puzzle when defining unusual glycan modifications from lower organisms.


Assuntos
Ácido N-Acetilneuramínico , Espectrometria de Massas em Tandem , Animais , Invertebrados/química , Fosfatos , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Açúcares , Sulfatos
7.
Sci Rep ; 10(1): 12903, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737362

RESUMO

During Leishmania transmission sand flies inoculate parasites and saliva into the skin of vertebrates. Saliva has anti-haemostatic and anti-inflammatory activities that evolved to facilitate bloodfeeding, but also modulate the host's immune responses. Sand fly salivary proteins have been extensively studied, but the nature and biological roles of protein-linked glycans remain overlooked. Here, we characterised the profile of N-glycans from the salivary glycoproteins of Lutzomyia longipalpis, vector of visceral leishmaniasis in the Americas. In silico predictions suggest half of Lu. longipalpis salivary proteins may be N-glycosylated. SDS-PAGE coupled to LC-MS analysis of sand fly saliva, before and after enzymatic deglycosylation, revealed several candidate glycoproteins. To determine the diversity of N-glycan structures in sand fly saliva, enzymatically released sugars were fluorescently tagged and analysed by HPLC, combined with highly sensitive LC-MS/MS, MALDI-TOF-MS, and exoglycosidase treatments. We found that the N-glycan composition of Lu. longipalpis saliva mostly consists of oligomannose sugars, with Man5GlcNAc2 being the most abundant, and a few hybrid-type species. Interestingly, some glycans appear modified with a group of 144 Da, whose identity has yet to be confirmed. Our work presents the first detailed structural analysis of sand fly salivary glycans.


Assuntos
Glicoproteínas/metabolismo , Proteínas de Insetos/metabolismo , Insetos Vetores/metabolismo , Leishmaniose Visceral , Psychodidae/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Animais
8.
Front Chem ; 8: 98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161746

RESUMO

Both vertebrates and invertebrates display active innate immune mechanisms for defense against microbial infection, including diversified repertoires of soluble and cell-associated lectins that can effect recognition and binding to potential pathogens, and trigger downstream effector pathways that clear them from the host internal milieu. Galectins are widely distributed and highly conserved lectins that have key regulatory effects on both innate and adaptive immune responses. In addition, galectins can bind to exogenous ("non-self") carbohydrates on the surface of bacteria, enveloped viruses, parasites, and fungi, and function as recognition receptors and effector factors in innate immunity. Like most invertebrates, eastern oysters (Crassostrea virginica) and softshell clams (Mya arenaria) can effectively respond to most immune challenges through soluble and hemocyte-associated lectins. The protozoan parasite Perkinsus marinus, however, can infect eastern oysters and cause "Dermo" disease, which is highly detrimental to both natural and farmed oyster populations. The sympatric Perkinsus chesapeaki, initially isolated from infected M. arenaria clams, can also be present in oysters, and there is little evidence of pathogenicity in either clams or oysters. In this review, we discuss selected observations from our studies on the mechanisms of Perkinsus recognition that are mediated by galectin-carbohydrate interactions. We identified in the oyster two galectins that we designated CvGal1 and CvGal2, which strongly recognize P. marinus trophozoites. In the clam we also identified galectin sequences, and focused on one (that we named MaGal1) that also recognizes Perkinsus species. Here we describe the biochemical characterization of CvGal1, CvGal2, and MaGal1 with focus on the detailed study of the carbohydrate specificity, and the glycosylated moieties on the surfaces of the oyster hemocytes and the two Perkinsus species (P. marinus and P. chesapeaki). Our goal is to gain further understanding of the biochemical basis for the interactions that lead to recognition and opsonization of the Perkinsus trophozoites by the bivalve hemocytes. These basic studies on the biology of host-parasite interactions may contribute to the development of novel intervention strategies for parasitic diseases of biomedical interest.

9.
J Biol Chem ; 295(10): 3173-3188, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32001617

RESUMO

Echinoderms are among the most primitive deuterostomes and have been used as model organisms to understand chordate biology because of their close evolutionary relationship to this phylogenetic group. However, there are almost no data available regarding the N-glycomic capacity of echinoderms, which are otherwise known to produce a diverse set of species-specific glycoconjugates, including ones heavily modified by fucose, sulfate, and sialic acid residues. To increase the knowledge of diversity of carbohydrate structures within this phylum, here we conducted an in-depth analysis of N-glycans from a brittle star (Ophiactis savignyi) as an example member of the class Ophiuroidea. To this end, we performed a multi-step N-glycan analysis by HPLC and various exoglyosidase and chemical treatments in combination with MALDI-TOF MS and MS/MS. Using this approach, we found a wealth of hybrid and complex oligosaccharide structures reminiscent of those in higher vertebrates as well as some classical invertebrate glycan structures. 70% of these N-glycans were anionic, carrying either sialic acid, sulfate, or phosphate residues. In terms of glycophylogeny, our data position the brittle star between invertebrates and vertebrates and confirm the high diversity of N-glycosylation in lower organisms.


Assuntos
Glicômica/métodos , Polissacarídeos/química , Estrelas-do-Mar/metabolismo , Animais , Sequência de Carboidratos , Cromatografia Líquida de Alta Pressão , Glicosídeo Hidrolases/metabolismo , Glicosilação , Oligossacarídeos/química , Filogenia , Polissacarídeos/classificação , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estrelas-do-Mar/classificação
10.
J Biol Chem ; 295(10): 3159-3172, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31969392

RESUMO

Among the earliest deuterostomes, the echinoderms are an evolutionary important group of ancient marine animals. Within this phylum, the holothuroids (sea cucumbers) are known to produce a wide range of glycoconjugate biopolymers with apparent benefits to health; therefore, they are of economic and culinary interest throughout the world. Other than their highly modified glycosaminoglycans (e.g. fucosylated chondroitin sulfate and fucoidan), nothing is known about their protein-linked glycosylation. Here we used multistep N-glycan fractionation to efficiently separate anionic and neutral N-glycans before analyzing the N-glycans of the black sea cucumber (Holothuria atra) by MS in combination with enzymatic and chemical treatments. These analyses showed the presence of various fucosylated, phosphorylated, sialylated, and multiply sulfated moieties as modifications of oligomannosidic, hybrid, and complex-type N-glycans. The high degree of sulfation and fucosylation parallels the modifications observed previously on holothuroid glycosaminoglycans. Compatible with its phylogenetic position, H. atra not only expresses vertebrate motifs such as sulfo- and sialyl-Lewis A epitopes but displays a high degree of anionic substitution of its glycans, as observed in other marine invertebrates. Thus, as for other echinoderms, the phylum- and order-specific aspects of this species' N-glycosylation reveal both invertebrate- and vertebrate-like features.


Assuntos
Holothuria/metabolismo , Polissacarídeos/química , Sulfatos/química , Animais , Configuração de Carboidratos , Sequência de Carboidratos , Cromatografia Líquida de Alta Pressão , Ecossistema , Glicosídeo Hidrolases/metabolismo , Glicosilação , Holothuria/classificação , Filogenia , Polissacarídeos/classificação , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
ACS Chem Biol ; 15(2): 369-377, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31935056

RESUMO

Zwitterionic modifications of glycans, such as phosphorylcholine and phosphoethanolamine, are known from a range of prokaryotic and eukaryotic species and are recognized by mammalian antibodies and pentraxins; however, defined saccharide ligands modified with these zwitterionic moieties for high-throughput studies are lacking. In this study, we prepared and tested example mono- and disaccharides 6-substituted with either phosphorylcholine or phosphoethanolamine as bovine serum albumin neoglycoconjugates or printed in a microarray format for subsequent assessment of their binding to lectins, pentraxins, and antibodies. C-Reactive protein and anti-phosphorylcholine antibodies bound specifically to ligands with phosphorylcholine, but recognition by concanavalin A was abolished or decreased as compared with that to the corresponding nonzwitterionic compounds. Furthermore, in array format, the phosphorylcholine-modified ligands were recognized by IgG and IgM in sera of either non-infected or nematode-infected dogs and pigs. Thereby, these new compounds are defined ligands which allow the assessment of glycan-bound phosphorylcholine as a target of both the innate and adaptive immune systems in mammals.


Assuntos
Proteína C-Reativa/metabolismo , Glicoconjugados/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Componente Amiloide P Sérico/metabolismo , Animais , Ascaríase/diagnóstico , Ascaríase/veterinária , Ascaris , Sequência de Carboidratos , Bovinos , Dirofilaria immitis , Dirofilariose/diagnóstico , Cães , Etanolaminas/síntese química , Etanolaminas/imunologia , Etanolaminas/metabolismo , Glicoconjugados/síntese química , Glicoconjugados/imunologia , Humanos , Ligantes , Fosforilcolina/análogos & derivados , Fosforilcolina/imunologia , Fosforilcolina/metabolismo , Ligação Proteica , Soroalbumina Bovina/química , Suínos
12.
Glycoconj J ; 37(1): 27-40, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31278613

RESUMO

Glycan structures in non-vertebrates are highly variable; it can be assumed that this is a product of evolution and speciation, not that it is just a random event. However, in animals and protists, there is a relatively limited repertoire of around ten monosaccharide building blocks, most of which are neutral in terms of charge. While two monosaccharide types in eukaryotes (hexuronic and sialic acids) are anionic, there are a number of organic or inorganic modifications of glycans such as sulphate, pyruvate, phosphate, phosphorylcholine, phosphoethanolamine and aminoethylphosphonate that also confer a 'charged' nature (either anionic or zwitterionic) to glycoconjugate structures. These alter the physicochemical properties of the glycans to which they are attached, change their ionisation when analysing them by mass spectrometry and result in different interactions with protein receptors. Here, we focus on N-glycans carrying anionic and zwitterionic modifications in protists and invertebrates, but make some reference to O-glycans, glycolipids and glycosaminoglycans which also contain such moieties. The conclusion is that 'charged' glycoconjugates are a widespread, but easily overlooked, feature of 'lower' organisms.


Assuntos
Glicoconjugados/química , Glicosaminoglicanos/química , Invertebrados/metabolismo , Animais , Glicoconjugados/metabolismo , Glicosaminoglicanos/metabolismo , Eletricidade Estática
13.
Biochim Biophys Acta Gen Subj ; 1863(11): 129409, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31398379

RESUMO

BACKGROUND: Previous glycophylogenetic comparisons of dipteran and lepidopteran species revealed variations in the anionic and zwitterionic modifications of their N-glycans; therefore, we wished to explore whether species- and order-specific glycomic variations would extend to the hymenoptera, which include the honeybee Apis mellifera, an agriculturally- and allergologically-significant social species. METHODS: In this study, we employed an off-line liquid chromatography/mass spectrometry approach, in combination with enzymatic and chemical treatments, to analyse the N-glycans of male honeybee larvae and honeybee venom in order to facilitate definition of isomeric structures. RESULTS: The neutral larval N-glycome was dominated by oligomannosidic and paucimannosidic structures, while the neutral venom N-glycome displayed more processed hybrid and complex forms with antennal N-acetylgalactosamine, galactose and fucose residues including Lewis-like epitopes; the anionic pools from both larvae and venom contained a wide variety of glucuronylated, sulphated and phosphoethanolamine-modified N-glycans with up to three antennae. In comparison to honeybee royal jelly, there were more fucosylated and fewer Man4/5-based hybrid glycans in the larvae and venom samples as well as contrasting antennal lengths. CONCLUSIONS: Combining the current data on venom and larvae with that we previously published on royal jelly, a total honeybee N-glycomic repertoire of some 150 compositions can be proposed in addition to the 20 previously identified on specific venom glycoproteins. SIGNIFICANCE: Our data are indicative of tissue-specific modification of the core and antennal regions of N-glycans in Apis mellifera and reinforce the concept that insects are capable of extensive processing to result in rather complex anionic oligosaccharide structures.


Assuntos
Venenos de Abelha/metabolismo , Abelhas/metabolismo , Proteínas de Insetos/metabolismo , Animais , Glicosilação , Masculino , Especificidade de Órgãos
14.
Parasitology ; 146(14): 1733-1742, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31046847

RESUMO

Many invertebrates are either parasites themselves or vectors involved in parasite transmission; thereby, the interactions of parasites with final or intermediate hosts are often mediated by glycans. Therefore, it is of interest to compare the glycan structures or motifs present across invertebrate species. While a typical vertebrate modification such as sialic acid is rare in lower animals, antennal and core modifications of N-glycans are highly varied and range from core fucose, galactosylated fucose, fucosylated galactose, methyl groups, glucuronic acid and sulphate through to addition of zwitterionic moieties (phosphorylcholine, phosphoethanolamine and aminoethylphosphonate). Only in some cases are the enzymatic bases and the biological function of these modifications known. We are indeed still in the phase of discovering invertebrate glycomes primarily using mass spectrometry, but molecular biology and microarraying techniques are complementary to the determination of novel glycan structures and their functions.


Assuntos
Interações Hospedeiro-Parasita , Invertebrados/química , Polissacarídeos/química , Animais , Fucose/química , Glicosilação , Ácidos Siálicos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Front Mol Biosci ; 6: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915340

RESUMO

Caenorhabditis elegans is a genetically well-studied model nematode or "worm"; however, its N-glycomic complexity is actually baffling and still not completely unraveled. Some features of its N-glycans are, to date, unique and include bisecting galactose and up to five fucose residues associated with the asparagine-linked Man2-3GlcNAc2 core; the substitutions include galactosylation of fucose, fucosylation of galactose and methylation of mannose or fucose residues as well as phosphorylcholine on antennal (non-reducing) N-acetylglucosamine. Only some of these modifications are shared with various other nematodes, while others have yet to be detected in any other species. Thus, C. elegans can be used as a model for some aspects of N-glycan function, but its glycome is far from identical to those of other organisms and is actually far from simple. Possibly the challenges of its native environment, which differ from those of parasitic or necromenic species, led to an anatomically simple worm possessing a complex glycome.

16.
Nat Commun ; 10(1): 75, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622255

RESUMO

The canine heartworm (Dirofilaria immitis) is a mosquito-borne parasitic nematode whose range is extending due to climate change. In a four-dimensional analysis involving HPLC, MALDI-TOF-MS and MS/MS in combination with chemical and enzymatic digestions, we here reveal an N-glycome of unprecedented complexity. We detect N-glycans of up to 7000 Da, which contain long fucosylated HexNAc-based repeats, as well as glucuronylated structures. While some modifications including LacdiNAc, chitobiose, α1,3-fucose and phosphorylcholine are familiar, anionic N-glycans have previously not been reported in nematodes. Glycan array data show that the neutral glycans are preferentially recognised by IgM in dog sera or by mannose binding lectin when antennal fucose and phosphorylcholine residues are removed; this pattern of reactivity is reversed for mammalian C-reactive protein, which can in turn be bound by the complement component C1q. Thereby, the N-glycans of D. immitis contain features which may either mediate immunomodulation of the host or confer the ability to avoid immune surveillance.


Assuntos
Dirofilaria immitis/imunologia , Dirofilariose/imunologia , Glicômica/métodos , Interações Hospedeiro-Parasita/imunologia , Polissacarídeos/imunologia , Animais , Proteína C-Reativa/imunologia , Proteína C-Reativa/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Complemento C1q/imunologia , Complemento C1q/metabolismo , Dirofilaria immitis/química , Dirofilariose/parasitologia , Cães , Feminino , Glicosilação , Vigilância Imunológica/imunologia , Masculino , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Espectrometria de Massas em Tandem/métodos
17.
Methods Mol Biol ; 1871: 421-435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30276752

RESUMO

N-Glycans are posttranslational modifications of proteins attached to the amide side chains of asparagine residues, with possible heterogeneity due to different structures being possible at the same glycosylation site. In contrast to the mammalian systems, invertebrate N-glycosylation presents a challenge in analysis as there exist unfamiliar epitopes and a high degree of structural and isomeric variation between different species. A simple analytical approach to analyze N-glycans on specific glycoproteins is presented, which involves a combination of tryptic peptide mass spectrometry and "off-line" RP-HPLC MALDI-TOF MS/MS complemented by blotting to recognize specific epitopes. An additional N-glycan enrichment and labeling step can facilitate the analysis of single structures and even provide isomeric separation of N-glycans from specific proteins.


Assuntos
Glicoproteínas , Proteoma , Proteômica , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Glicoproteínas/metabolismo , Invertebrados , Peptídeos/metabolismo , Polissacarídeos/química , Proteólise , Proteômica/métodos , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Mol Cell Proteomics ; 17(11): 2177-2196, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30104209

RESUMO

Royal jelly has received attention because of its necessity for the development of queen honeybees as well as claims of benefits on human health; this product of the hypopharyngeal glands of worker bees contains a large number of proteins, some of which have been claimed to have various biological effects only in their glycosylated state. However, although there have been glycomic and glycoproteomic analyses in the past, none of the glycan structures previously defined would appear to have potential to trigger specific biological functions. In the current study, whole royal jelly as well as single protein bands were subject to off-line LC-MALDI-TOF MS glycomic analyses, complemented by permethylation, Western blotting and arraying data. Similarly to recent in-depth studies on other insect species, previously overlooked glucuronic acid termini, sulfation of mannose residues and core ß-mannosylation of the N-glycans were found; additionally, a relatively rare zwitterionic modification with phosphoethanolamine is present, in contrast to the phosphorylcholine occurring in lepidopteran species. Indicative of tissue-specific remodelling of glycans in the Golgi apparatus of hypopharyngeal gland cells, only a low amount of fucosylated or paucimannosidic glycans were detected as compared with other insect samples or even bee venom. The unusual modifications of hybrid and multiantennary structures defined here may not only have a physiological role in honeybee development, but represent epitopes recognized by pentraxins with roles in animal innate immunity.


Assuntos
Ácidos Graxos/química , Glicoproteínas/metabolismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Ânions , Bovinos , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Etanolaminas/metabolismo , Fucose/metabolismo , Ácido Glucurônico/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosilação , Isomerismo , Manose/metabolismo , Proteoma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sulfatos/metabolismo , Espectrometria de Massas em Tandem
19.
Biochim Biophys Acta Gen Subj ; 1862(10): 2191-2203, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981898

RESUMO

The modification in the Golgi of N-glycans by N-acetylglucosaminyltransferase I (GlcNAc-TI, MGAT1) can be considered to be a hallmark of multicellular eukaryotes as it is found in all metazoans and plants, but rarely in unicellular organisms. The enzyme is key for the normal processing of N-glycans to either complex or paucimannosidic forms, both of which are found in the model nematode Caenorhabditis elegans. Unusually, this organism has three different GlcNAc-TI genes (gly-12, gly-13 and gly-14); therefore, a complete abolition of GlcNAc-TI activity required the generation of a triple knock-out strain. Previously, the compositions of N-glycans from this mutant were described, but no detailed structures. Using an off-line HPLC-MALDI-TOF-MS approach combined with exoglycosidase digestions and MS/MS, we reveal that the multiple hexose residues of the N-glycans of the gly-12;gly-13;gly-14 triple mutant are not just mannose, but include galactoses in three different positions (ß-intersecting, ß-bisecting and α-terminal) on isomeric forms of Hex4-8HexNAc2 structures; some of these structures are fucosylated and/or methylated. Thus, the N-glycomic repertoire of Caenorhabditis is even wider than expected and exhibits a large degree of plasticity even in the absence of key glycan processing enzymes from the Golgi apparatus.


Assuntos
Animais Geneticamente Modificados/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Mutação , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Polissacarídeos/metabolismo , Animais , Animais Geneticamente Modificados/genética , Proteínas de Caenorhabditis elegans/química , Glicômica , Glicosilação , N-Acetilglucosaminiltransferases/genética , Polissacarídeos/química
20.
Glycobiology ; 28(7): 474-481, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29757381

RESUMO

O-glycosylation is probably one of the most varied sets of post-translational modifications across all organisms, but amongst the most refractory to analyze. In animals, O-xylosylation of serine residues represents the first stage in the synthesis of glycosaminoglycans, whose repeat regions are generally analyzed as fragments resulting from enzymatic or chemical degradation, whereas their core regions can be isolated by ß-elimination or endo-ß-xylosidase digestion. In the present study, we show that hydrazinolysis can be employed for release of glycosaminoglycan-type oligosaccharides from nematodes prior to fluorescent labeling with 2-aminopyridine. While various [HexNAcHexA]nGal2Xyl oligosaccharides were isolated from the model organism Caenorhabditis elegans, more unusual glycosaminoglycan-type glycans were found to be present in the porcine parasite Oesophagostomum dentatum. In this case, as judged by MS/MS before and after hydrofluoric acid or ß-galactosidase digestion, core sequences with extra galactose and phosphorylcholine residues were detected as [(±PC)HexNAcHexA]n(±PC)Galß3-(±Galß4)Galß4Xyl. Thus, hydrazinolysis and fluorescent labeling can be combined to analyze unique forms of O-xylosylation, including new examples of zwitterionic glycan modifications.


Assuntos
Glicosaminoglicanos/biossíntese , Oesophagostomum/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Feminino , Glicosaminoglicanos/química , Masculino , Oesophagostomum/patogenicidade , Suínos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...