Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Int J Nanomedicine ; 18: 6393-6408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954458

RESUMO

Background: Tarin, a lectin purified from Colocasia esculenta, promotes in vitro and in vivo immunomodulatory effects allied to promising anticancer and antimetastatic effects against human adenocarcinoma mammary cells. This makes this 47 kDa-protein a natural candidate against human breast cancer, a leading cause of death among women. Tarin encapsulated in pegylated nanoliposomes displays increased effectiveness in controlling the proliferation of a mammary adenocarcinoma lineage comprising MDA-MB-231 cells. Methods: The mechanisms enrolled in anticancer and antimetastatic responses were investigated by treating MDA-MB-231 cells with nano-encapsulated tarin at 72 µg/mL for up to 48h through flow cytometry and transmission electron microscopy (TEM). The safety of nano-encapsulated tarin towards healthy tissue was also assessed by the resazurin viability assay, and the effect of nanoencapsulated tarin on cell migration was evaluated by scratch assays. Results: Ultrastructural analyses of MDA-MB-231 cells exposed to nanoencapsulated tarin revealed the accumulation of autophagosomes and damaged organelles, compatible with autophagy-dependent cell death. On the other hand, the flow cytometry investigation detected the increased occurrence of acidic vacuolar organelles, a late autophagosome trait, along with the enhanced presence of apoptotic cells, activated caspase-3/7, and cell cycle arrest at G0/G1. No deleterious effects were observed in healthy fibroblast cells following tarin nanoencapsulated exposition, in contrast to reduced viability in cells exposed to free tarin. The migration of MDA-MB-231 cells was inhibited by nano-encapsulated tarin, with delayed movement by 24 h compared to free tarin. Conclusion: The nanoliposome formulation delivers tarin in a delayed and sustained manner, as evidenced by the belated and potent antitumoral and anti-migration effects on adenocarcinoma cells, with no toxicity to healthy cells. Although further investigations are required to fully understand antitumorigenic tarin mechanisms, the activation of both apoptotic and autophagic machineries along with the caspase-3/7 pathway, and cell cycle arrest may comprise a part of these mechanisms.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Humanos , Feminino , Caspase 3 , Linhagem Celular Tumoral , Apoptose , Neoplasias da Mama/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Autofagia
2.
Antioxidants (Basel) ; 12(10)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37891902

RESUMO

Red beetroot extract (E162) is a natural colorant that owes its color to betanin, its major red pigment. Betanin displays remarkable antioxidant, anti-inflammatory, and chemoprotective properties mediated by its structure and influence on gene expression. However, the betanin employed in most preclinical assays is a beetroot extract diluted in dextrin, not pure betanin, as no isolated compound is commercially available. This makes its use inaccurate concerning product content estimates and biological effect assessments. Herein, a combination of conventional extraction under orbital shaking and ultrasound-assisted extraction (UAE) to purify betanin by semi-preparative HPLC was performed. The employed methodology extracts betalains at over a 90% yield, achieving 1.74 ± 0.01 mg of pure betanin/g beetroot, a 41% yield from beetroot contents increasing to 50 %, considering the betalains pool. The purified betanin exhibited an 85% purity degree against 32 or 72% of a commercial standard evaluated by LC-MS or HPLC methods, respectively. The identity of purified betanin was confirmed by UV-Vis, LC-MS, and 1H NMR. The combination of a conventional extraction, UAE, and semi-preparative HPLC allowed for betanin purification with a high yield, superior purity, and almost three times more antioxidant power compared to commercial betanin, being, therefore, more suitable for clinical purposes.

3.
Nutrients ; 15(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37299579

RESUMO

Pathophysiological conditions such as endothelial dysfunction and arterial stiffness, characterized by low nitric oxide bioavailability, deficient endothelium-dependent vasodilation and heart effort, predispose individuals to atherosclerotic lesions and cardiac events. Nitrate (NO3-), L-arginine, L-citrulline and potassium (K+) can mitigate arterial dysfunction and stiffness by intensifying NO bioavailability. Dietary compounds such as L-arginine, L-citrulline, NO3- and K+ exert vasoactive effects as demonstrated in clinical interventions by noninvasive flow-mediated vasodilation (FMD) and pulse-wave velocity (PWV) prognostic techniques. Daily L-arginine intakes ranging from 4.5 to 21 g lead to increased FMD and reduced PWV responses. Isolated L-citrulline intake of at least 5.6 g has a better effect compared to watermelon extract, which is only effective on endothelial function when supplemented for longer than 6 weeks and contains at least 6 g of L-citrulline. NO3- supplementation employing beetroot at doses greater than 370 mg promotes hemodynamic effects through the NO3--NO2-/NO pathway, a well-documented effect. A potassium intake of 1.5 g/day can restore endothelial function and arterial mobility, where decreased vascular tone takes place via ATPase pump/hyperpolarization and natriuresis, leading to muscle relaxation and NO release. These dietary interventions, alone or synergically, can ameliorate endothelial dysfunction and should be considered as adjuvant therapies in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Rigidez Vascular , Humanos , Citrulina/farmacologia , Fatores de Risco , Vasodilatação , Fatores de Risco de Doenças Cardíacas , Arginina/farmacologia , Endotélio Vascular , Óxido Nítrico/farmacologia
4.
Foods ; 12(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37048318

RESUMO

Beetroot is a tuber rich in antioxidant compounds, i.e., betanin and saponins, and is one of the main sources of dietary nitrate. The aim of the present study was to microencapsulate a ready-to-eat beetroot soup by lyophilization using different encapsulating agents, which supply the required amount of bioactive nutrients. Particle size distributions ranged from 7.94 ± 1.74 to 245.66 ± 2.31 µm for beetroot soup in starch and from 30.56 ± 1.66 to 636.34 ± 2.04 µm in maltodextrin. Microparticle yields of powdered beetroot soup in starch varied from 77.68% to 88.91%, and in maltodextrin from 75.01% to 80.25%. The NO3- and total betalain contents at a 1:2 ratio were 10.46 ± 0.22 mmol·100 g-1 fresh weight basis and 219.7 ± 4.92 mg·g-1 in starch powdered beetroot soup and 8.43 ± 0.09 mmol·100 g-1 fresh weight basis and 223.9 ± 4.21 mg·g-1 in maltodextrin powdered beetroot soup. Six distinct minerals were identified and quantified in beetroot soups, namely Na, K, Mg, Mn, Zn and P. Beetroot soup microencapsulated in starch or maltodextrin complied with microbiological quality guidelines for consumption, with good acceptance and purchase intention throughout 90 days of storage. Microencapsulated beetroot soup may, thus, comprise a novel attractive strategy to offer high contents of bioaccessible dietary nitrate and antioxidant compounds that may aid in the improvement of vascular-protective effects.

5.
Polymers (Basel) ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36987212

RESUMO

Biopolymers obtained from natural macromolecules are noteworthy among materials presenting high biocompatibility and adequate biodegradability, as is the case of chitosan (CS), making this biopolymeric compound a suitable drug delivery system. Herein, chemically-modified CS were synthetized using 2,3-dichloro-1,4-naphthoquinone (1,4-NQ) and the sodium salt of 1,2-naphthoquinone-4-sulfonic acid (1,2-NQ), producing 1,4-NQ-CS and 1,2-NQ-CS by three different methods, employing an ethanol and water mixture (EtOH:H2O), EtOH:H2O plus triethylamine and dimethylformamide. The highest substitution degree (SD) of 0.12 was achieved using water/ethanol and triethylamine as the base for 1,4-NQ-CS and 0.54 for 1,2-NQ-CS. All synthesized products were characterized by FTIR, elemental analysis, SEM, TGA, DSC, Raman, and solid-state NMR, confirming the CS modification with 1,4-NQ and 1,2-NQ. Chitosan grafting to 1,4-NQ displayed superior antimicrobial activities against Staphylococcus aureus and Staphylococcus epidermidis associated with improved cytotoxicity and efficacy, indicated by high therapeutic indices, ensuring safe application to human tissue. Although 1,4-NQ-CS inhibited the growth of human mammary adenocarcinoma cells (MDA-MB-231), it is accompanied by cytotoxicity and should be considered with caution. The findings reported herein emphasize that 1,4-NQ-grafted CS may be useful in protecting injured tissue against bacteria, commonly found in skin infections, until complete tissue recovery.

6.
Arq Bras Cardiol ; 120(1): e20220209, 2023.
Artigo em Inglês, Português | MEDLINE | ID: mdl-36629601

RESUMO

BACKGROUND: The diet's inorganic nitrate (NO3-) may provide a physiological substrate for reducing nitrate (NO2-) to NO independent of the endothelium. Studies suggest that inorganic NO3- has beneficial effects on cardiovascular health. OBJECTIVE: This study evaluated the acute effects of 500 mL nitrate-rich beetroot juice (BRJ; containing 11.5mmol NO3-) on blood pressure and endothelial function in treated hypertensive patients. METHODS: A randomized, placebo-controlled, crossover study was conducted in treated hypertensive patients (n=37; women=62%) who underwent clinical and nutritional evaluation and assessment of central hemodynamic parameters and microvascular reactivity. The significance level was p<0.05. RESULTS: The mean age was 59±7 years, and mean systolic and diastolic blood pressures were 142±10/83±9mmHg. There was a significant increase in the subendocardial viability ratio (SEVR; 149±25 vs. 165±30%, p<0.001) and reduction in ejection duration (ED; 37±4 vs. 34±4%, p<0.001) in the beetroot phase but no significant SEVR difference in the control phase. The % increase in perfusion (155 vs. 159 %, p=0.042) was significantly increased in the beetroot phase, which was not observed in the control phase. In the beetroot phase, the change in SEVR showed a significant correlation with the change in the area under the curve of post-occlusive reactive hyperemia (AUC-PORH) (r=0.45, p=0.012). The change in ED showed a significant correlation with the post-intervention perfusion peak (r=-0.37, p=0.031) and AUC-PORH (r=-0.36, p=0.046). CONCLUSIONS: The acute ingestion of BRJ by hypertensive patients resulted in an improvement of endothelial function, which was associated with higher subendocardial viability and performance in myocardial contraction.


FUNDAMENTO: O nitrato inorgânico (NO3­) da dieta pode fornecer substrato fisiológico para reduzir o nitrito (NO2­) a óxido nítrico (NO) independente do endotélio. Estudos sugerem que o NO3­ inorgânico tem efeitos benéficos na saúde cardiovascular. OBJETIVOS: Este estudo avaliou os efeitos agudos de 500 mL de suco de beterraba rico em nitrato (SB; contendo 11,5mmol NO3­) na pressão arterial e na função endotelial em pacientes hipertensos tratados. MÉTODOS: Estudo cruzado, randomizado, controlado por placebo foi realizado em pacientes hipertensos tratados (n=37; mulheres=62%) que foram submetidos à avaliação clínica e nutricional, avaliação dos parâmetros hemodinâmicos centrais e reatividade microvascular. O nível de significância foi p<0,05. RESULTADOS: A média de idade foi 59±7 anos e das pressões sistólica e diastólica foi de 142±10/83±9 mmHg. Houve aumento significativo na taxa de viabilidade subendocárdica (RVSE; 149±25 vs. 165±30%, p<0,001) e redução na duração da ejeção (DE; 37±4 vs. 34±4%, p<0,001) na fase beterraba, mas nenhuma diferença significativa de RVSE na fase controle. O % de aumento na perfusão (155 vs. 159%, p=0,042) cresceu significativamente na fase beterraba, o que não foi observado na fase controle. Na fase beterraba, a alteração da RVSE apresentou correlação significativa com a alteração da área sob a curva de hiperemia reativa pós-oclusiva (ASC-HRPO) (r=0,45, p=0,012). A mudança na DE mostrou uma correlação significativa com pico de perfusão pós-intervenção (r=-0,37, p=0,031) e ASC-HRPO (r=-0,36, p=0,046). CONCLUSÃO: A ingestão aguda de SB por pacientes hipertensos resultou em melhora da função endotelial, que foi associada à maior viabilidade subendocárdica e desempenho na contração miocárdica.


Assuntos
Hipertensão , Nitratos , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Nitratos/farmacologia , Nitratos/uso terapêutico , Estudos Cross-Over , Hipertensão/tratamento farmacológico , Pressão Sanguínea , Endotélio , Suplementos Nutricionais , Método Duplo-Cego
7.
Arq. bras. cardiol ; 120(1): e20220209, 2023. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1420145

RESUMO

Resumo Fundamento O nitrato inorgânico (NO3-) da dieta pode fornecer substrato fisiológico para reduzir o nitrito (NO2-) a óxido nítrico (NO) independente do endotélio. Estudos sugerem que o NO3- inorgânico tem efeitos benéficos na saúde cardiovascular. Objetivos Este estudo avaliou os efeitos agudos de 500 mL de suco de beterraba rico em nitrato (SB; contendo 11,5mmol NO3-) na pressão arterial e na função endotelial em pacientes hipertensos tratados. Métodos Estudo cruzado, randomizado, controlado por placebo foi realizado em pacientes hipertensos tratados (n=37; mulheres=62%) que foram submetidos à avaliação clínica e nutricional, avaliação dos parâmetros hemodinâmicos centrais e reatividade microvascular. O nível de significância foi p<0,05. Resultados A média de idade foi 59±7 anos e das pressões sistólica e diastólica foi de 142±10/83±9 mmHg. Houve aumento significativo na taxa de viabilidade subendocárdica (RVSE; 149±25 vs. 165±30%, p<0,001) e redução na duração da ejeção (DE; 37±4 vs. 34±4%, p<0,001) na fase beterraba, mas nenhuma diferença significativa de RVSE na fase controle. O % de aumento na perfusão (155 vs. 159%, p=0,042) cresceu significativamente na fase beterraba, o que não foi observado na fase controle. Na fase beterraba, a alteração da RVSE apresentou correlação significativa com a alteração da área sob a curva de hiperemia reativa pós-oclusiva (ASC-HRPO) (r=0,45, p=0,012). A mudança na DE mostrou uma correlação significativa com pico de perfusão pós-intervenção (r=-0,37, p=0,031) e ASC-HRPO (r=-0,36, p=0,046). Conclusão A ingestão aguda de SB por pacientes hipertensos resultou em melhora da função endotelial, que foi associada à maior viabilidade subendocárdica e desempenho na contração miocárdica.


Abstract Background The diet's inorganic nitrate (NO3-) may provide a physiological substrate for reducing nitrate (NO2-) to NO independent of the endothelium. Studies suggest that inorganic NO3- has beneficial effects on cardiovascular health. Objective This study evaluated the acute effects of 500 mL nitrate-rich beetroot juice (BRJ; containing 11.5mmol NO3-) on blood pressure and endothelial function in treated hypertensive patients. Methods A randomized, placebo-controlled, crossover study was conducted in treated hypertensive patients (n=37; women=62%) who underwent clinical and nutritional evaluation and assessment of central hemodynamic parameters and microvascular reactivity. The significance level was p<0.05. Results The mean age was 59±7 years, and mean systolic and diastolic blood pressures were 142±10/83±9mmHg. There was a significant increase in the subendocardial viability ratio (SEVR; 149±25 vs. 165±30%, p<0.001) and reduction in ejection duration (ED; 37±4 vs. 34±4%, p<0.001) in the beetroot phase but no significant SEVR difference in the control phase. The % increase in perfusion (155 vs. 159 %, p=0.042) was significantly increased in the beetroot phase, which was not observed in the control phase. In the beetroot phase, the change in SEVR showed a significant correlation with the change in the area under the curve of post-occlusive reactive hyperemia (AUC-PORH) (r=0.45, p=0.012). The change in ED showed a significant correlation with the post-intervention perfusion peak (r=-0.37, p=0.031) and AUC-PORH (r=-0.36, p=0.046). Conclusions The acute ingestion of BRJ by hypertensive patients resulted in an improvement of endothelial function, which was associated with higher subendocardial viability and performance in myocardial contraction.

8.
Front Bioeng Biotechnol ; 11: 1284630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239922

RESUMO

Introduction: The use of chitosan in pharmaceutical formulations is an advantageous approach due to this compound intrinsic biodegradability and biocompatibility, as well as ready availability and low polymer cost. Methods: Herein, the naphthoquinones 3- chloromethylene-menadione (NQ1) and 2,3-dichloro-1,4-naphthoquinone (NQ2) were nanoencapsulated into chitosan (CNP) by the ionotropic gelatinization technique and characterized by DLS, FTIR, SEM, TGA and DSC, and their release profiles evaluated. The antimicrobial and wound healing activities were investigated. Results and Discussion: Homogeneous chitosan nanocapsulses of about 193 nm and Z potential ranging from +30.6 to +33.1 mV loaded with NQ1 (CNP-NQ1) or NQ2 (CNPQNQ2). With nanoencapsulation efficiencies of ≥ 96%, the solubility of naphthoquinones in aqueous environments was improved, making them suitable for biological system applications. The encapsulated naphthoquinones displayed a controlled release of approximately 80% for CNP-NQ1 and 90% for CNP-NQ2 over an 8 h period at 36°C. Both CNP-NQ1 and CNP-NQ2 retained the already established free naphthoquinone antimicrobial activity against two Staphylococcus aureus strains, Staphylococcus epidermidis, Streptococcus pyogenes and Pseudomonas aeruginosa. Although presenting low toxicity to healthy human cells, only CNP-NQ1 displayed therapeutic indices above 100 for S. aureus and S. epidermidis and above 27 for S. pyogenes and P. aeruginosa, allowing for safe use in human tissues. Furthermore, CNP-NQ1 did not impair the migration of human fibroblast cells in scratch assays, adding promising wound healing properties to this formulation. These findings emphasize that CNP-NQ1 may be useful in protecting injured skin tissue from bacterial contamination, avoiding skin infections not only by reducing bacterial loads but also by accelerating the healing process until complete dermal tissue recovery.

9.
Pharmaceutics ; 14(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559301

RESUMO

Drug delivery systems are believed to increase pharmaceutical efficacy and the therapeutic index by protecting and stabilizing bioactive molecules, such as protein and peptides, against body fluids' enzymes and/or unsuitable physicochemical conditions while preserving the surrounding healthy tissues from toxicity. Liposomes are biocompatible and biodegradable and do not cause immunogenicity following intravenous or topical administration. Still, their most important characteristic is the ability to load any drug or complex molecule uncommitted to its hydrophobic or hydrophilic character. Selecting lipid components, ratios and thermo-sensitivity is critical to achieve a suitable nano-liposomal formulation. Nano-liposomal surfaces can be tailored to interact successfully with target cells, avoiding undesirable associations with plasma proteins and enhancing their half-life in the bloodstream. Macropinocytosis-dynamin-independent, cell-membrane-cholesterol-dependent processes, clathrin, and caveolae-independent mechanisms are involved in liposome internalization and trafficking within target cells to deliver the loaded drugs to modulate cell function. A successful translation from animal studies to clinical trials is still an important challenge surrounding the approval of new nano-liposomal drugs that have been the focus of investigations. Precision medicine based on the design of functionalized nano-delivery systems bearing highly specific molecules to drive therapies is a promising strategy to treat degenerative diseases.

10.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430619

RESUMO

Aldehydes, particularly acetaldehyde, are carcinogenic molecules and their concentrations in foodstuffs should be controlled to avoid upper aerodigestive tract (UADT) and liver cancers. Highly reactive, acetaldehyde forms DNA and protein adducts, impairing physiological functions and leading to the development of pathological conditions. The consumption of aged beer, outside of the ethanol metabolism, exposes habitual drinkers to this carcinogen, whose concentrations can be over-increased due to post-brewing chemical and biochemical reactions. Storage-related changes are a challenge faced by the brewing industry, impacting volatile compound formation and triggering flavor instability. Aldehydes are among the volatile compounds formed during beer aging, recognized as off-flavor compounds. To track and understand aldehyde formation through multiple pathways during beer storage, consequent changes in flavor but particularly quality losses and harmful compound formation, this systematic review reunited data on volatile compound profiles through gas chromatography analyses from 2011 to 2021. Conditions to avoid flavor instability and successful methods for reducing beer staling, and consequent acetaldehyde accumulation, were raised by exploring the dynamic conversion between free and bound-state aldehydes. Future research should focus on implementing sensory analyses to investigate whether adding aldehyde-binding agents, e.g., cysteine and bisulfite, would contribute to consumer acceptance, restore beer flavor, and minimize acetaldehyde-related health damage.


Assuntos
Acetaldeído , Aldeídos , Humanos , Idoso , Cerveja , Carcinógenos , Carcinogênese
11.
Artigo em Inglês | MEDLINE | ID: mdl-36141460

RESUMO

Children are highly vulnerable to chemical exposure. Thus, metal and metalloid in infant formulas are a concern, although studies in this regard are still relatively scarce. Thus, the presence of aluminum, arsenic, cadmium, tin, mercury, lead, and uranium was investigated in infant formulas marketed in Brazil by inductively coupled plasma mass spectrometry, and the Target Hazard Quotients (THQ) and Target Cancer Risk (TCR) were calculated in to assess the potential risk of toxicity for children who consume these products continuously. Aluminum ranging from 0.432 ± 0.049 to 1.241 ± 0.113 mg·kg-1, arsenic from 0.012 ± 0.009 to 0.034 ± 0.006 mg·kg-1, and tin from 0.007 ± 0.003 to 0.095 ± 0.024 mg·kg-1 were the major elements, while cadmium and uranium were present at the lowest concentrations. According to the THQ, arsenic contents in infant formulas showed a THQ > 1, indicating potential health risk concerns for newborns or children. Minimal carcinogenic risks were observed for the elements considered carcinogenic. Metabolic and nutritional interactions are also discussed. This study indicates the need to improve infant formula surveillance concerning contamination by potentially toxic and carcinogenic elements.


Assuntos
Arsênio , Mercúrio , Metaloides , Metais Pesados , Neoplasias , Urânio , Criança , Humanos , Lactente , Recém-Nascido , Alumínio/análise , Arsênio/análise , Arsênio/toxicidade , Brasil/epidemiologia , Cádmio/análise , Carcinógenos/análise , Carcinógenos/toxicidade , Saúde da Criança , Contaminação de Alimentos/análise , Intoxicação por Metais Pesados , Fórmulas Infantis/análise , Mercúrio/análise , Metaloides/análise , Metais Pesados/análise , Receptores de Antígenos de Linfócitos T , Medição de Risco , Estanho/análise , Urânio/análise
12.
Pharmaceutics ; 14(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745879

RESUMO

Chitosan displays a dual function, acting as both an active ingredient and/or carrier for pharmaceutical bioactive molecules and metal ions. Its hydroxyl- and amino-reactive groups and acetylation degree can be used to adjust this biopolymer's physicochemical and pharmacological properties in different forms, including scaffolds, nanoparticles, fibers, sponges, films, and hydrogels, among others. In terms of pharmacological purposes, chitosan association with different polymers and the immobilization or entrapment of bioactive agents are effective strategies to achieve desired biological responses. Chitosan biocompatibility, water entrapment within nanofibrils, antioxidant character, and antimicrobial and anti-inflammatory properties, whether enhanced by other active components or not, ensure skin moisturization, as well as protection against bacteria colonization and oxidative imbalance. Chitosan-based nanomaterials can maintain or reconstruct skin architecture through topical or systemic delivery of hydrophilic or hydrophobic pharmaceuticals at controlled rates to treat skin affections, such as acne, inflammatory manifestations, wounds, or even tumorigenesis, by coating chemotherapy drugs. Herein, chitosan obtention, physicochemical characteristics, chemical modifications, and interactions with bioactive agents are presented and discussed. Molecular mechanisms involved in chitosan skin protection and recovery are highlighted by overlapping the events orchestrated by the signaling molecules secreted by different cell types to reconstitute healthy skin tissue structures and components.

13.
Front Nutr ; 9: 857698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571960

RESUMO

Infant formulas are the main nutritional source for infants when breastfeeding is not possible or recommended. The daily need for specific nutrients, such as essential minerals, in early stages of a child's life is high because of rapid infant growth and development, which impose metabolic flux increases on these pathways to support growth, physical activity, and defense against infections. In this context, this research aimed to determine macromineral and trace mineral contents in starting (phase 1) and follow-up (phase 2) infant formulas marketed in Brazil (n = 30) by inductively coupled plasma-mass spectrometry, calculate estimated daily intakes, and compare them to reference values regarding adequate intake and tolerable upper intake levels. The highest concentrations of macrominerals were observed in Ca, K, P, and Na, and trace minerals in Fe, Zn, Mn, and Cu. Certain homogeneity only to trace mineral contents was observed when analyzing inter-batch values from same manufacturers. In general, all phase 1 and phase 2 infant formula brands and batches met or exceeded Fe, Zn, Cu, Mo, and Se contents when compared to maximum limits established by Codex Alimentarius. In addition, Zn contents in eight phase 1 and in four phase 2 infant formulas were above the contents established by the tolerable upper intake level for children aged 0-6 and/or 7-12 months, respectively. These findings highlight the need to expand regular infant formula inspection concerning nutritional quality, as some composition aspects of these foods must be improved to follow international guidelines, since ideal requirements for infant formula composition, quality, and safety interfere in child development and adult health.

14.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35215278

RESUMO

The protein-rich nature of Saccharomyces cerevisiae has led this yeast to the spotlight concerning the search for antimicrobial peptides. Herein, a <10 kDa peptide-rich extract displaying antibacterial activity was obtained through the autolysis of yeast biomass under mild thermal treatment with self-proteolysis by endogenous peptidases. Estimated IC50 for the peptide pools obtained by FPLC gel filtration indicated improved antibacterial activities against foodborne bacteria and bacteria of clinical interest. Similarly, the estimated cytotoxicity concentrations against healthy human fibroblasts, alongside selective indices ≥10, indicates the fractions are safe, at least in a mixture format, for human tissues. Nano-LC-MS/MS analysis revealed that the peptides in FPLC fractions could be derived from both induced-proteolysis and proteasome activity in abundant proteins, up-regulated under stress conditions during S. cerevisiae biomass manufacturing, including those coded by TDH1/2/3, HSP12, SSA1/2, ADH1/2, CDC19, PGK1, PPI1, PDC1, and GMP1, as well as by other non-abundant proteins. Fifty-eight AMP candidate sequences were predicted following an in silico analysis using four independent algorithms, indicating their possible contribution to the bacterial inactivation observed in the peptides pool, which deserve special attention for further validation of individual functionality. S. cerevisiae-biomass peptides, an unconventional but abundant source of pharmaceuticals, may be promissory adjuvants to treat infectious diseases that are poorly sensitive to conventional antibiotics.

15.
J Pharm Biomed Anal ; 211: 114608, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35123330

RESUMO

Coronavidae viruses, such as SARS-CoV, SARS-CoV-2, and MERS-CoV, cause severe lower respiratory tract infection, acute respiratory distress syndrome and extrapulmonary manifestations, such as diarrhea and fever, eventually leading to death. Fast, accurate, reproductible, and cost-effective SARS-CoV-2 identification can be achieved employing nano-biosensors, reinforcing conventional methodologies to avoid the spread of COVID-19 within and across communities. Nano-biosensors built using gold, silver, graphene, In2O3 nanowire and iron oxide nanoparticles, Quantum Dots and carbon nanofibers have been successfully employed to detect specific virus antigens - nucleic acid sequences and/or proteins -or host antibodies produced in response to viral infection. Biorecognition counterpart molecules have been immobilized on the surface of these nanomaterials, leading to selective virus detection by optical or electrochemical transducer systems. This systematic review assessed studies on described and tested immunonsensors and genosensors designed from distinct nanomaterials available at the Pubmed, Scopus, and Science Direct databases. Twenty-three nano biosensors were found suitable for unequivocal coronavirus detection in clinical samples. Nano-biosensors coupled to RT-LAMP/RT-PCR assays can optimize RNA extraction, reduce analysis times and/or eliminate sophisticated instrumentation. Although promising for the diagnosis of Coronavidae family members, further trials in large populations must be adequately and rigorously conducted to address nano-biosensor applicability in the clinical practice for early coronavirus infection detection.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanoestruturas , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Ouro/química , Humanos , SARS-CoV-2/genética
16.
Molecules ; 27(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35208981

RESUMO

Phenolic compounds (PCs) present in foods are associated with a decreased risk of developing inflammatory diseases. The aim of this study was to extract and characterize PCs from craft beer powder and evaluate their potential benefits in an experimental model of inflammatory bowel disease (IBD). PCs were extracted and quantified from pure beer samples. BALB/c mice received either the beer phenolic extract (BPE) or beer powder fortified with phenolic extract (BPFPE) of PCs daily for 20 days by gavage. Colon samples were collected for histopathological and immunohistochemical analyses. Dextran sodium sulfate (DSS)-induced mice lost more weight, had reduced colon length, and developed more inflammatory changes compared with DSS-induced mice treated with either BPE or BPFPE. In addition, in DSS-induced mice, the densities of CD4- and CD11b-positive cells, apoptotic rates, and activation of NF-κB and p-ERK1/2 MAPK intracellular signaling pathways were higher in those treated with BPE and BPFPE than in those not treated. Pretreatment with the phenolic extract and BPFPE remarkably attenuated DSS-induced colitis. The protective effect of PCs supports further investigation and development of therapies for human IBD.


Assuntos
Cerveja , Colite , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pós , Dodecilsulfato de Sódio/toxicidade
17.
Crit Rev Food Sci Nutr ; 62(2): 539-554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32997545

RESUMO

Oxidative stress is a common physiopathological condition enrolled in risk factors for cardiovascular diseases. Individuals in such a redox imbalance status present endothelial dysfunctions and inflammation, reaching the onset of heart disease. Phytochemicals are able to attenuate the main mechanisms of oxidative stress and inflammation and should be considered as supportive therapies to manage risk factors for cardiovascular diseases. Beetroot (Beta vulgaris L.) is a rich source of bioactive compounds, including betanin (betanidin-5-O-ß-glucoside), a pigment displaying the potential to alleviate oxidative stress and inflammantion, as previously demonstrated in preclinical trials. Betanin resists gastrointestinal digestion, is absorbed by the epithelial cells of intestinal mucosa and reaches the plasma in its active form. Betanin displays free-radical scavenger ability through hydrogen or electron donation, preserving lipid structures and LDL particles while inducing the transcription of antioxidant genes through the nuclear factor erythroid-2-related factor 2 and, simultaneously, suppressing the pro-inflammatory nuclear factor kappa-B pathways. This review discusses the anti-radical and gene regulatory cardioprotective activities of betanin in the pathophysiology of endothelial damage and atherogenesis, the main conditions for cardiovascular disease. In addition, betanin influences on these multipath cellular signals and aiding in reducing cardiovascular disorders is proposed.


Assuntos
Betacianinas , Doenças Cardiovasculares , Antioxidantes , Doenças Cardiovasculares/prevenção & controle , Humanos , Inflamação/prevenção & controle , Estresse Oxidativo
18.
Nutrients ; 13(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34836188

RESUMO

Infant formulas, designed to provide similar nutritional composition and performance to human milk, are recommended when breastfeeding is not enough to provide for the nutritional needs of children under 12 months of age. In this context, the present study aimed to assess the protein quality and essential amino acid content of both starting (phase 1) and follow-up (phase 2) formulas from different manufacturers. The chemical amino acid score and protein digestibility corrected by the amino acid score were calculated. The determined protein contents in most formulas were above the maximum limit recommended by FAO and WHO guidelines and at odds with the protein contents declared in the label. All infant formulas contained lactoferrin (0.06 to 0.44 g·100 g-1) and α-lactalbumin (0.02 to 1.34 g·100 g-1) below recommended concentrations, whereas ĸ-casein (8.28 to 12.91 g·100 g-1), α-casein (0.70 to 2.28 g·100 g-1) and ß-lactoglobulin (1.32 to 4.19 g·100 g-1) were detected above recommended concentrations. Essential amino acid quantification indicated that threonine, leucine and phenylalanine were the most abundant amino acids found in the investigated infant formulas. In conclusion, infant formulas are still unconforming to nutritional breast milk quality and must be improved in order to follow current global health authority guidelines.


Assuntos
Aminoácidos Essenciais/análise , Proteínas Alimentares/análise , Digestão , Fórmulas Infantis/química , Valor Nutritivo , Animais , Brasil , Aleitamento Materno , Caseínas/análise , Bovinos , Proteínas Alimentares/metabolismo , Humanos , Lactente , Fórmulas Infantis/normas , Recém-Nascido , Lactalbumina/análise , Lactoferrina/análise , Lactoglobulinas/análise , Leite Humano/química
19.
Compr Rev Food Sci Food Saf ; 20(5): 4450-4479, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34378312

RESUMO

Saccharomyces cerevisiae is the main biotechnological tool for the production of Baker's or Brewer's biomasses, largely applied in beverage and fermented-food production. Through its gene expression reprogramming and production of compounds that inactivate the growth of other microorganisms, S. cerevisiae is able to grow in adverse environments and in complex microbial consortia, as in fruit pulps and root flour fermentations. The distinct set of up-regulated genes throughout yeast biomass propagation includes those involved in sugar fermentation, ethanol metabolization, and in protective responses against abiotic stresses. These high abundant proteins are precursors of several peptides with promising health-beneficial activities such as antihypertensive, antioxidant, antimicrobial, immunomodulatory, anti-obesity, antidiabetes, and mitogenic properties. An in silico investigation of these S. cerevisiae derived peptides produced during yeast biomass propagation or induced by physicochemical treatments were performed using four algorithms to predict antimicrobial candidates encrypted in abundantly expressed stress-related proteins encoded by different genes like AHP1, TSA1, HSP26, SOD1, HSP10, and UTR2, or metabolic enzymes involved in carbon source utilization, like ENO1/2, TDH1/2/3, ADH1/2, FBA1, and PDC1. Glyceraldehyde-3-phosphate dehydrogenase and enolase II are noteworthy precursor proteins, since they exhibited the highest scores concerning the release of antimicrobial peptide candidates. Considering the set of genes upregulated during biomass propagation, we conclude that S. cerevisiae biomass, a food-grade product consumed and marketed worldwide, should be considered a safe and nonseasonal source for designing next-generation bioactive agents, especially protein encrypting antimicrobial peptides that display broad spectra activity and could reduce the emergence of microbial resistance while also avoiding cytotoxicity.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Biomassa , Conservantes de Alimentos , Proteínas de Choque Térmico , Proteínas Citotóxicas Formadoras de Poros , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361774

RESUMO

Polyphenols play a therapeutic role in vascular diseases, acting in inherent illness-associate conditions such as inflammation, diabetes, dyslipidemia, hypertension, and oxidative stress, as demonstrated by clinical trials and epidemiological surveys. The main polyphenol cardioprotective mechanisms rely on increased nitric oxide, decreased asymmetric dimethylarginine levels, upregulation of genes encoding antioxidant enzymes via the Nrf2-ARE pathway and anti-inflammatory action through the redox-sensitive transcription factor NF-κB and PPAR-γ receptor. However, poor polyphenol bioavailability and extensive metabolization restrict their applicability. Polyphenols carried by nanoparticles circumvent these limitations providing controlled release and better solubility, chemical protection, and target achievement. Nano-encapsulate polyphenols loaded in food grade polymers and lipids appear to be safe, gaining resistance in the enteric route for intestinal absorption, in which the mucoadhesiveness ensures their increased uptake, achieving high systemic levels in non-metabolized forms. Nano-capsules confer a gradual release to these compounds, as well as longer half-lives and cell and whole organism permanence, reinforcing their effectiveness, as demonstrated in pre-clinical trials, enabling their application as an adjuvant therapy against cardiovascular diseases. Polyphenol entrapment in nanoparticles should be encouraged in nutraceutical manufacturing for the fortification of foods and beverages. This study discusses pre-clinical trials evaluating how nano-encapsulate polyphenols following oral administration can aid in cardiovascular performance.


Assuntos
Antioxidantes/farmacologia , Cardiotônicos/farmacologia , Composição de Medicamentos/métodos , Hipertensão/tratamento farmacológico , Isquemia Miocárdica/tratamento farmacológico , Polifenóis/farmacologia , Elementos de Resposta Antioxidante , Antioxidantes/química , Antioxidantes/farmacocinética , Arginina/análogos & derivados , Arginina/antagonistas & inibidores , Arginina/metabolismo , Cardiotônicos/química , Cardiotônicos/farmacocinética , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Portadores de Fármacos , Dislipidemias/tratamento farmacológico , Dislipidemias/genética , Dislipidemias/metabolismo , Dislipidemias/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/química , Polifenóis/farmacocinética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...