Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 179(17): 4161-4180, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34599847

RESUMO

BACKGROUND AND PURPOSE: Post-traumatic stress disorder (PTSD) is a heterogeneous disorder induced by trauma, resulting in severe long-term impairments of an individual's mental health. PTSD does not develop in every individual and, thus, some individuals are more resilient. However, the underlying molecular mechanisms are poorly understood. Here, we aimed to elucidate these processes. EXPERIMENTAL APPROACH: We used a single-trauma PTSD model in mice to induce long-term maladaptive behaviours and profiled the mice 4 weeks after trauma into resilient or susceptible individuals. The classification of phenotype was based on individual responses in different behavioural experiments. We analysed microbiome, circulating endocannabinoids, and long-term changes in brain phospholipid and transcript levels. KEY RESULTS: We found many molecular differences between resilient and susceptible individuals across multiple molecular domains, including lipidome, transcriptome and gut microbiome. Some differences were stable even several weeks after the trauma, indicating the long-term impact of traumatic stimuli on the organism's physiology. Furthermore, the integration of these multilayered molecular data revealed that resilient and susceptible individuals have very distinct molecular signatures across various physiological systems. CONCLUSION AND IMPLICATIONS: Trauma induced individual-specific behavioural responses that, in combination with a longitudinal characterisation of mice, could be used to identify distinct sub-phenotypes within the trauma-exposed group. These groups differed significantly not only in their behaviour but also in specific molecular aspects across a variety of tissues and brain regions. This approach may reveal new targets and predictive biomarkers for the pharmacological treatment and prognosis of stress-related disorders. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.


Assuntos
Encéfalo , Transtornos de Estresse Pós-Traumáticos , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos , Transtornos de Estresse Pós-Traumáticos/patologia
2.
Front Synaptic Neurosci ; 13: 660718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897403

RESUMO

Brain homeostasis is the dynamic equilibrium whereby physiological parameters are kept actively within a specific range. The homeostatic range is not fixed and may change throughout the individual's lifespan, or may be transiently modified in the presence of severe perturbations. The endocannabinoid system has emerged as a safeguard of homeostasis, e.g., it modulates neurotransmission and protects neurons from prolonged or excessively strong activation. We used genetically engineered mouse lines that lack the cannabinoid type-1 receptor (CB1) either in dorsal telencephalic glutamatergic or in forebrain GABAergic neurons to create new allostatic states, resulting from alterations in the excitatory/inhibitory (E/I) balance. Previous studies with these two mouse lines have shown dichotomic results in the context of behavior, neuronal morphology, and electrophysiology. Thus, we aimed at analyzing the transcriptomic profile of the hippocampal CA region from these mice in the basal condition and after a mild behavioral stimulation (open field). Our results provide insights into the gene networks that compensate chronic E/I imbalances. Among these, there are differentially expressed genes involved in neuronal and synaptic functions, synaptic plasticity, and the regulation of behavior. Interestingly, some of these genes, e.g., Rab3b, Crhbp, and Kcnn2, and related pathways showed a dichotomic expression, i.e., they are up-regulated in one mutant line and down-regulated in the other one. Subsequent interrogation on the source of the alterations at transcript level were applied using exon-intron split analysis. However, no strong directions toward transcriptional or post-transcriptional regulation comparing both mouse lines were observed. Altogether, the dichotomic gene expression observed and their involved signaling pathways are of interest because they may act as "switches" to modulate the directionality of neural homeostasis, which then is relevant for pathologies, such as stress-related disorders and epilepsy.

3.
Neuropsychopharmacology ; 46(5): 982-991, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33558679

RESUMO

Palatable food can promote overfeeding beyond homeostatic requirements, thereby constituting a major risk to obesity. Here, the lack of cannabinoid type 1 receptor (CB1) in dorsal telencephalic glutamatergic neurons (Glu-CB1-KO) abrogated the overconsumption of palatable food and the development of obesity. On low-fat diet, no genotype differences were observed. However, under palatable food conditions, Glu-CB1-KO mice showed decreased body weight and food intake. Notably, Glu-CB1-KO mice were protected from alterations in the reward system after high-fat diet feeding. Interestingly, obese wild-type mice showed a superior olfactory detection as compared to mutant mice, suggesting a link between overconsumption of palatable food and olfactory function. Reconstitution of CB1 expression in olfactory cortex in high-fat diet-fed Glu-CB1-KO mice using viral gene delivery partially reversed the lean phenotype concomitantly with improved odor perception. These findings indicate that CB1 in cortical glutamatergic neurons regulates hedonic feeding, whereby a critical role of the olfactory cortex was uncovered as an underlying mechanism.


Assuntos
Canabinoides , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios , Obesidade/genética , Receptor CB1 de Canabinoide/genética
4.
Transl Psychiatry ; 11(1): 4, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33414410

RESUMO

Major depressive disorder is the most prevalent mental illness worldwide, still its pharmacological treatment is limited by various challenges, such as the large heterogeneity in treatment response and the lack of insight into the neurobiological pathways underlying this phenomenon. To decode the molecular mechanisms shaping antidepressant response and to distinguish those from general paroxetine effects, we used a previously established approach targeting extremes (i.e., good vs poor responder mice). We focused on the dentate gyrus (DG), a subregion of major interest in the context of antidepressant mechanisms. Transcriptome profiling on micro-dissected DG granule cells was performed to (i) reveal cell-type-specific changes in paroxetine-induced gene expression (paroxetine vs vehicle) and (ii) to identify molecular signatures of treatment response within a cohort of paroxetine-treated animals. We identified 112 differentially expressed genes associated with paroxetine treatment. The extreme group comparison (good vs poor responder) yielded 211 differentially expressed genes. General paroxetine effects could be distinguished from treatment response-associated molecular signatures, with a differential gene expression overlap of only 4.6% (15 genes). Biological pathway enrichment and cluster analyses identified candidate mechanisms associated with good treatment response, e.g., neuropeptide signaling, synaptic transmission, calcium signaling, and regulation of glucocorticoid secretion. Finally, we examined glucocorticoid receptor (GR)-dependent regulation of selected response-associated genes to analyze a hypothesized interplay between GR signaling and good antidepressant treatment response. Among the most promising candidates, we suggest potential targets such as the developmental gene Otx2 or Htr2c for further investigations into antidepressant treatment response in the future.


Assuntos
Transtorno Depressivo Maior , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Giro Denteado , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Hipocampo , Camundongos , Paroxetina/farmacologia , Paroxetina/uso terapêutico
5.
Front Neurosci ; 13: 527, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244590

RESUMO

Beside diverse therapeutic properties of palmitoylethanolamide (PEA) including: neuroprotection, inflammation and pain alleviation, prophylactic effects have also been reported in animal models of infections, inflammation, and neurological diseases. The availability of PEA as (ultra)micronized nutraceutical formulations with reportedly no side effects, renders it accordingly an appealing candidate in human preventive care, such as in population at high risk of disease development or for healthy aging. PEA's mode of action is multi-facetted. Consensus exists that PEA's effects are primarily modulated by the peroxisome proliferator-activated receptor alpha (PPARα) and that PEA-activated PPARα has a pleiotropic effect on lipid metabolism, inflammation gene networks, and host defense mechanisms. Yet, an exhaustive view of how the prophylactic PEA administration changes the lipid signaling in brain and periphery, thereby eliciting a beneficial response to various negative stimuli remains still elusive. We therefore, undertook a broad lipidomic and transcriptomic study in brain and spleen of adult mice to unravel the positive molecular phenotype rendered by prophylactic PEA. We applied a tissue lipidomic and transcriptomic approach based on simultaneous extraction and subsequent targeted liquid chromatography-multiple reaction monitoring (LC-MRM) and mRNA analysis by qPCR, respectively. We targeted lipids of COX-, LOX- and CYP450 pathways, respectively, membrane phospholipids, lipid products of cPLA2, and free fatty acids, along with various genes involved in their biosynthesis and function. Additionally, plasma lipidomics was applied to reveal circulatory consequences and/or reflection of PEA's action. We found broad, distinct, and several previously unknown tissue transcriptional regulations of inflammatory pathways. In hippocampus also a PEA-induced transcriptional regulation of neuronal activity and excitability was evidenced. A massive downregulation of membrane lipid levels in the splenic tissue of the immune system with a consequent shift towards pro-resolving lipid environment was also detected. Plasma lipid pattern reflected to a large extent the hippocampal and splenic lipidome changes, highlighting the value of plasma lipidomics to monitor effects of nutraceutical PEA administration. Altogether, these findings contribute new insights into PEA's molecular mechanism and helps answering the questions, how PEA prepares the body for insults and what are the "good lipids" that underlie this action.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...