Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Clin Transl Neurol ; 10(9): 1695-1699, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452008

RESUMO

Dravet syndrome (DS) is a monogenic, often refractory, epilepsy resultant from SCN1A haploinsufficiency in humans. A novel therapeutic target in DS that can be engaged in isolation or as adjunctive therapy is highly desirable. Here, we demonstrate reduced expression of the rodent glutamate transporter type 1 (GLT-1) in a DS mouse model, and in wild type mouse strains where Scn1a haploinsufficiency is most likely to cause epilepsy, indicating that GLT-1 depression may play a role in DS seizures. As GLT-1 can be upregulated by common and safe FDA-approved medications, this strategy may be an attractive, viable, and novel avenue for DS treatment.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Transportador 2 de Aminoácido Excitatório , Animais , Humanos , Camundongos , Sistema X-AG de Transporte de Aminoácidos , Epilepsias Mioclônicas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo
2.
Front Cell Neurosci ; 17: 1123365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383840

RESUMO

Ischemic stroke is a leading cause of death and disability worldwide. A serious risk of acute ischemic stroke (AIS) arises after the stroke event, due to inflammation and edema formation. Inflammation and edema in the brain are mediated by bradykinin, the formation of which is dependent upon a multi-ligand receptor protein called gC1qR. There are currently no preventive treatments for the secondary damage of AIS produced by inflammation and edema. This review aims to summarize recent research regarding the role of gC1qR in bradykinin formation, its role in inflammation and edema following ischemic injury, and potential therapeutic approaches to preventing post-stroke inflammation and edema formation.

3.
Cereb Cortex ; 33(7): 4070-4084, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130098

RESUMO

Traumatic brain injury (TBI) increases cerebral reactive oxygen species production, which leads to continuing secondary neuronal injury after the initial insult. Cortical parvalbumin-positive interneurons (PVIs; neurons responsible for maintaining cortical inhibitory tone) are particularly vulnerable to oxidative stress and are thus disproportionately affected by TBI. Systemic N-acetylcysteine (NAC) treatment may restore cerebral glutathione equilibrium, thus preventing post-traumatic cortical PVI loss. We therefore tested whether weeks-long post-traumatic NAC treatment mitigates cortical oxidative stress, and whether such treatment preserves PVI counts and related markers of PVI integrity and prevents pathologic electroencephalographic (EEG) changes, 3 and 6 weeks after fluid percussion injury in rats. We find that moderate TBI results in persistent oxidative stress for at least 6 weeks after injury and leads to the loss of PVIs and the perineuronal net (PNN) that surrounds them as well as of per-cell parvalbumin expression. Prolonged post-TBI NAC treatment normalizes the cortical redox state, mitigates PVI and PNN loss, and - in surviving PVIs - increases per-cell parvalbumin expression. NAC treatment also preserves normal spectral EEG measures after TBI. We cautiously conclude that weeks-long NAC treatment after TBI may be a practical and well-tolerated treatment strategy to preserve cortical inhibitory tone post-TBI.


Assuntos
Acetilcisteína , Lesões Encefálicas Traumáticas , Ratos , Animais , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Parvalbuminas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Estresse Oxidativo/fisiologia , Interneurônios/metabolismo
4.
Transl Psychiatry ; 11(1): 325, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045439

RESUMO

TAK-653 is a novel α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-positive allosteric modulator being developed as a potential therapeutic for major depressive disorder (MDD). Currently, there are no translational biomarkers that evaluate physiological responses to the activation of glutamatergic brain circuits available. Here, we tested whether noninvasive neurostimulation, specifically single-pulse or paired-pulse motor cortex transcranial magnetic stimulation (spTMS and ppTMS, respectively), coupled with measures of evoked motor response captures the pharmacodynamic effects of TAK-653 in rats and healthy humans. In the rat study, five escalating TAK-653 doses (0.1-50 mg/kg) or vehicle were administered to 31 adult male rats, while measures of cortical excitability were obtained by spTMS coupled with mechanomyography. Twenty additional rats were used to measure brain and plasma TAK-653 concentrations. The human study was conducted in 24 healthy volunteers (23 males, 1 female) to assess the impact on cortical excitability of 0.5 and 6 mg TAK-653 compared with placebo, measured by spTMS and ppTMS coupled with electromyography in a double-blind crossover design. Plasma TAK-653 levels were also measured. TAK-653 increased both the mechanomyographic response to spTMS in rats and the amplitude of motor-evoked potentials in humans at doses yielding similar plasma concentrations. TAK-653 did not affect resting motor threshold or paired-pulse responses in humans. This is the first report of a translational functional biomarker for AMPA receptor potentiation and indicates that TMS may be a useful translational platform to assess the pharmacodynamic profile of glutamate receptor modulators.


Assuntos
Transtorno Depressivo Maior , Estimulação Magnética Transcraniana , Animais , Biomarcadores , Potencial Evocado Motor , Feminino , Masculino , Ratos , Receptores de AMPA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...