Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276497

RESUMO

Cucurbiturils are a family of macrocyclic oligomers capable of forming host-guest complexes with various molecules. Due to noncovalent binding to drug molecules and low toxicity, cucurbiturils has been extensively investigated as potential carriers for drug delivery. However, the immune system's interactions with different drug carriers, including cucurbiturils, are still under investigation. In this study, we focused on cucurbiturils' immunosafety and immunomodulation properties in vivo. We measured blood counts and lymphocyte subpopulations in blood, spleen, and bone marrow, and assessed the in vivo toxicity to spleen and bone marrow cells after intraperitoneal administration to BALB/c mice. When assessing the effect of cucurbit[6]uril on blood parameters after three intraperitoneal injections within a week in laboratory animals, a decrease in white blood cells was found in mice after injections of cucurbit[6]util, but the observed decrease in the number of white blood cells was within the normal range. At the same time, cucurbit[7]uril and cucurbit[8]uril did not affect the leukocyte counts of mice after three injections. Changes in the number of platelets, erythrocytes, and monocytes, as well as in several other indicators, such as hematocrit or erythrocyte volumetric dispersion, were not detected. We show that cucurbiturils do not have immunotoxicity in vivo, with the exception of a cytotoxic effect on spleen cells after сucurbit[7]uril administration at a high dosage. We also evaluated the effect of cucurbiturils on cellular and humoral immune responses. We founded that cucurbiturils in high concentrations affect the immune system in vivo, and the action of various cucurbiturils differs in different homologues, which is apparently associated with different interactions in the internal environment of the body.

2.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674954

RESUMO

Reactive oxygen species (ROS) are highly reactive chemical molecules containing oxygen. ROS play an important role in signaling and cell homeostasis at low and moderate concentrations. ROS could be a cause of damage to proteins, nucleic acids, lipids, membranes and organelles at high concentrations. There are a lot of cells that can produce ROS to maintain functional activity. It is known that metal nanoparticles can increase production of ROS in cells. However, the effect of cucurbiturils on ROS production is still unknown. In our study, we evaluated production of ROS by the immune (T-, B-lymphocytes, NK-cells) and non-immune cells (red blood cells, platelets), as well as tumor cells line (1301, K562) after treatment with cucurbiturils in vitro. Assessment of reactive oxide species (ROS) were provided by using dihydrorhodamine 123 (DHR 123). Fluorescence intensity and percentage DHR123 were measured by flow cytometry. Platelets, erythrocytes and activated T-helpers were changed the level of ROS production in response to stimulation with cucurbiturils. It was found that the percentage of these ROS-producing cells was reduced by cucurbiturils. Thus, cucurbiturils may affect the production of ROS by cells, but further research is needed in this area.


Assuntos
Plaquetas , Eritrócitos , Espécies Reativas de Oxigênio/metabolismo , Plaquetas/metabolismo , Eritrócitos/metabolismo , Linfócitos B/metabolismo
3.
Int J Mol Sci ; 23(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35628503

RESUMO

Tumor cells with stem cell properties are considered to play major roles in promoting the development and malignant behavior of aggressive cancers. Therapeutic strategies that efficiently eradicate such tumor stem cells are of highest clinical need. Herein, we performed the validation of the polycationic phosphorus dendrimer-based approach for small interfering RNAs delivery in in vitro stem-like cells as models. As a therapeutic target, we chose Lyn, a member of the Src family kinases as an example of a prominent enzyme class widely discussed as a potent anti-cancer intervention point. Our selection is guided by our discovery that Lyn mRNA expression level in glioma, a class of brain tumors, possesses significant negative clinical predictive value, promoting its potential as a therapeutic target for future molecular-targeted treatments. We then showed that anti-Lyn siRNA, delivered into Lyn-expressing glioma cell model reduces the cell viability, a fact that was not observed in a cell model that lacks Lyn-expression. Furthermore, we have found that the dendrimer itself influences various parameters of the cells such as the expression of surface markers PD-L1, TIM-3 and CD47, targets for immune recognition and other biological processes suggested to be regulating glioblastoma cell invasion. Our findings prove the potential of dendrimer-based platforms for therapeutic applications, which might help to eradicate the population of cancer cells with augmented chemotherapy resistance. Moreover, the results further promote our functional stem cell technology as suitable component in early stage drug development.


Assuntos
Neoplasias Encefálicas , Dendrímeros , Glioblastoma , Glioma , Neoplasias Encefálicas/metabolismo , Dendrímeros/metabolismo , Dendrímeros/farmacologia , Glioblastoma/metabolismo , Glioma/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
4.
Pharmaceutics ; 15(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36678776

RESUMO

Short regulatory oligonucleotides are considered prospective tools for immunotherapy. However, they require an adequate carrier to deliver potential therapeutics into immune cells. Herein, we explore the potential of polycationic dendrimers as carriers for microRNAs in peripheral blood mononuclear cells of healthy donors. As an oligonucleotide cargo, we use a synthetic mimic and an inhibitor of miR-155, an important factor in the development and functioning of immunocompetent cells. Dendrimers bind microRNAs into low-cytotoxic polyelectrolyte complexes that are efficiently uptaken by immunocompetent cells. We have shown these complexes to affect the number of T-regulatory cells, CD14+ and CD19+ cell subpopulations in non-activated mononuclear cells. The treatment affected the expression of HLA-DR on T-cells and PD-1 expression on T- and B-lymphocytes. It also affected the production of IL-4 and IL-10, but not the perforin and granzyme B production. Our findings suggest the potential of dendrimer-mediated microRNA-155 treatment for immunotherapy, though the activity of microRNA-dendrimer constructions on distinct immune cell subsets can be further improved.

5.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298956

RESUMO

Cucurbit[7]uril (CB[7]) is a molecular container that may form host-guest complexes with platinum(II) anticancer drugs and modulate their efficacy and safety. In this paper, we report our studies of the effect of CB[7]-oxaliplatin complex and the mixture of CB[7] and carboplatin (1:1) on viability and proliferation of a primary cell culture (peripheral blood mononuclear cells), two tumor cell lines (B16 and K562) and their activity in the animal model of melanoma. At the same time, we studied the impact of platinum (II) drugs with CB[7] on T cells and B cells in vitro. Although the stable CB[7]-carboplatin complex was not formed, the presence of cucurbit[7]uril affected the biological properties of carboplatin. In vivo, CB[7] increased the antitumor effect of carboplatin, but, at the same time, increased its acute toxicity. Compared to free oxaliplatin, its complex with CB[7] shows a greater cytotoxic effect on tumor cell lines B16 and K562, while in vivo, the effects of the free drug and encapsulated drug were comparable. However, in vivo studies also demonstrated that the encapsulation of oxaliplatin in CB[7] lowered the toxicity of the drug.


Assuntos
Antineoplásicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Carboplatina/farmacologia , Imidazóis/farmacologia , Fatores Imunológicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Piridinas/farmacologia , Animais , Feminino , Humanos , Células K562 , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos
6.
Nanomaterials (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063763

RESUMO

Currently, cucurbiturils are being actively researched all over the world. Research is focused on the ways of improving the solubility and selectivity of cucurbiturils, increasing the stability of the complexes with other particles in various media and enhancing their ability to bind and release various substances. The most significant area of our research is the assessment of safety, studying the biological properties and synergistic effects of cucurbiturils during complexation with drugs. In this article, the hemocompatibility of erythrocytes and leukocytes with cucurbiturils was investigated. We demonstrated that cucurbiturils have no cytotoxic effect, even at high concentrations (1 mM) and do not affect the viability of PBMCs. However, cucurbiturils can increase the level of the early apoptosis of lymphocytes and cucurbit[7]uril enhances hemolysis in biologically relevant media. Despite this, cucurbiturils are fairly safe organic molecules in concentrations up to 0.3 mM. Thus, we believe that it will become possible to use polymer nanostructures as drug delivery systems in clinical practice, since cucurbiturils can be modified to improve pharmacological properties.

7.
Life (Basel) ; 11(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809452

RESUMO

Homeostatic proliferation (HP) is a physiological process that reconstitutes the T cell pool after lymphopenia involving Interleukin-7 and 15 (IL-7 and IL-15), which are the key cytokines regulating the process. However, there is no evidence that these cytokines influence the function of regulatory T cells (Tregs). Since lymphopenia often accompanies autoimmune diseases, we decided to study the functional activity of Tregs stimulated by HP cytokines from patients with rheumatoid arthritis as compared with that of those from healthy donors. Since T cell receptor (TCR) signal strength determines the intensity of HP, we imitated slow HP using IL-7 or IL-15 and fast HP using a combination of IL-7 or IL-15 with anti-CD3 antibodies, cultivating Treg cells with peripheral blood mononuclear cells (PBMCs) at a 1:1 ratio. We used peripheral blood from 14 patients with rheumatoid arthritis and 18 healthy volunteers. We also used anti-CD3 and anti-CD3 + IL-2 stimulation as controls. The suppressive activity of Treg cells was evaluated in each case by the inhibition of the proliferation of CD4+ and CD8+ cells. The phenotype and proliferation of purified CD3+CD4+CD25+CD127lo cells were assessed by flow cytometry. The suppressive activity of the total pool of Tregs did not differ between the rheumatoid arthritis and healthy donors; however, it significantly decreased in conditions close to fast HP when the influence of HP cytokines was accompanied by anti-CD3 stimulation. The Treg proliferation caused by HP cytokines was lower in the rheumatoid arthritis (RA) patients than in the healthy individuals. The revealed decrease in Treg suppressive activity could impact the TCR landscape during lymphopenia and lead to the proliferation of potentially self-reactive T cell clones that are able to receive relatively strong TCR signals. This may be another explanation as to why lymphopenia is associated with the development of autoimmune diseases. The revealed decrease in Treg proliferation under IL-7 and IL-15 exposure can lead to a delay in Treg pool reconstitution in patients with rheumatoid arthritis in the case of lymphopenia.

8.
Nanomaterials (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35010098

RESUMO

The most effective method of treating allergic diseases, aimed not at relieving symptoms, but at eliminating the cause of the disease, is allergen-specific immunotherapy (AIT). To reduce the risk of side effects and improve the delivery of allergens to the mucosa, various delivery systems, such as liposomes, dendrimers, nanoparticles, etc., can be used. To date, there are data on the creation of delivery systems based on glycyrrhizic acid (GA) and its derivatives, but such a delivery system has not been used for allergen-specific therapy until now. It is also known that GA has an anti-inflammatory effect, shifts the balance towards Th1, and increases the number of Treg cells, meaning that it could potentially enhance the anti-allergic effect of AIT and reduce the risk of unwanted side effects. Thus, the study of the immunomodulatory effect of the supramolecular complexes (micelles) of GA with extracts of allergens holds promise for the development of new drugs for AIT.

9.
Nanomaterials (Basel) ; 10(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977594

RESUMO

Supramolecular constructions of amphiphilic dendritic molecules are promising vehicles for anti-cancer drug delivery due to the flexibility of their architecture, high drug loading capacity and avoiding off-target effects of a drug. Herein, we report a new class of amphiphilic dendritic species-triazine-carbosilane dendrons readily self-assembling into pH-sensitive dendrimersomes. The dendrimersomes efficiently encapsulate anticancer drugs doxorubicin and methotrexate. Chemodrug-loaded dendrimersomes have dose-related cytotoxic activity against leukaemia cell lines 1301 and K562. Our findings suggest that triazine-carbosilane dendrimersomes are prospective drug carriers for anti-cancer therapy.

10.
Molecules ; 25(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32726898

RESUMO

Cucurbiturils (CB[n]s) are nanoscale macrocyclic compounds capable of encapsulating a molecule or part of a molecule by forming host-guest complexes. Integration of drugs with CB[n] is used for the following purposes: controlling clearance; protection of the drug from biodegradation; targeted delivery to specific organs, tissues, or cells; reduction of toxicity; and improving solubility. One of the major problems encountered in the application of new drug delivery systems is lack of knowledge of their biological properties. CB[n], unlike many other often toxic nanoparticles, has extremely low toxicity, even at high doses. However, many aspects of the biological actions of these nanoscale cavitands remain unclear, including the immunotropic properties. In this study, we investigated the immunotoxicity and immunomodulation properties of CB[n]. It was found that CB[7] and CB[6] did not decrease the viability of mononuclear cells at all tested concentrations from 0.1-1 mM. Overall, the results indicated an immunomodulatory effect of different concentrations of CB[n]. In the case of a longer cultivation time, CB[n] had an immunostimulating effect, which was indicated by an enhancement of the proliferative activity of cells and increased expression of HLA-DR on lymphocytes.


Assuntos
Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Compostos Macrocíclicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Leucócitos Mononucleares/citologia , Compostos Macrocíclicos/efeitos adversos
11.
Pharmaceutics ; 11(2)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795556

RESUMO

Supramolecular chemistry holds great potential for the design of versatile and safe carriers for therapeutic proteins and peptides. Nanocarriers can be designed to meet specific criteria for given application (exact drug, administration route, target tissue, etc.). However, alterations in the topology of formulation components can drastically change their activity. This is why the supramolecular topology of therapeutic nanoconstructions has to be considered. Herein, we discuss several topological groups used for the design of nanoformulations for peptide and protein delivery: modification of polypeptide chains by host-guest interactions; packaging of proteins and peptides into liposomes; complexation and conjugation with dendrimers. Each topological type has its own advantages and disadvantages, so careful design of nanoformulations is needed. Ideally, each case where nanomedicine is needed requires a therapeutic construction specially created for that taking into account features of the administration route, target tissue, or organ, properties of a drug, its bioavailability, etc. The wide number of studies in the field of protein delivery by supramolecular and nanocarriers for proteins and peptides evidence their increasing potential for different aspects of the innovative medicine. Although significant progress has been achieved in the field, there are several remaining challenges to be overcome in future.

12.
Int Immunopharmacol ; 47: 199-205, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28427014

RESUMO

Cucurbit[7]uril (CB7) is an uncharged and water-soluble macrocyclic host. CB7 binds to doubly protonated tuftsin, which is the tetrapeptide Thr-Lys-Pro-Arg, with moderate affinity (Ka=2.1×103M-1). In this study, the host-guest complexation was confirmed by fluorescence titration. This affinity would allow for easy release of the peptide under physiological conditions. According to density functional theory calculations, the structural binding motif involves hydrogen bonding. The most energetically stable form had the Arg side chain inside the CB7 cavity. The effects of the tuftsin-CB7 complex on the proliferation and cytokine activity of immune cells were studied. The complex had broader spectrum immunomodulation than free peptides, and caused statistically significant (p<0,05) changes in cytokine production (tumor necrosis factor-α, interleukin-2, interferon-γ, and interleukin-10) by mononuclear cells. By contrast, the free peptide only activated tumor necrosis factor-α production.


Assuntos
Leucócitos Mononucleares/imunologia , Compostos Macrocíclicos/metabolismo , Complexos Multiproteicos/metabolismo , Fragmentos de Peptídeos/metabolismo , Tuftsina/metabolismo , Biologia Computacional , Citocinas/metabolismo , Humanos , Imunomodulação , Ativação Linfocitária , Compostos Macrocíclicos/química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Complexos Multiproteicos/química , Fragmentos de Peptídeos/química , Ligação Proteica , Conformação Proteica , Tuftsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...