Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Rev (Melville) ; 4(4): 041301, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38510845

RESUMO

In this paper, we review a powerful methodology to solve complex numerical simulations, known as isogeometric analysis, with a focus on applications to the biophysical modeling of the heart. We focus on the hemodynamics, modeling of the valves, cardiac tissue mechanics, and on the simulation of medical devices and treatments. For every topic, we provide an overview of the methods employed to solve the specific numerical issue entailed by the simulation. We try to cover the complete process, starting from the creation of the geometrical model up to the analysis and post-processing, highlighting the advantages and disadvantages of the methodology.

3.
Circulation ; 140(5): 390-404, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311300

RESUMO

BACKGROUND: Modeling of human arrhythmias with induced pluripotent stem cell-derived cardiomyocytes has focused on single-cell phenotypes. However, arrhythmias are the emergent properties of cells assembled into tissues, and the impact of inherited arrhythmia mutations on tissue-level properties of human heart tissue has not been reported. METHODS: Here, we report an optogenetically based, human engineered tissue model of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia caused by mutation of the cardiac ryanodine channel and triggered by exercise. We developed a human induced pluripotent stem cell-derived cardiomyocyte-based platform to study the tissue-level properties of engineered human myocardium. We investigated pathogenic mechanisms in CPVT by combining this novel platform with genome editing. RESULTS: In our model, CPVT tissues were vulnerable to developing reentrant rhythms when stimulated by rapid pacing and catecholamine, recapitulating hallmark features of the disease. These conditions elevated diastolic Ca2+ levels and increased temporal and spatial dispersion of Ca2+ wave speed, creating a vulnerable arrhythmia substrate. Using Cas9 genome editing, we pinpointed a single catecholamine-driven phosphorylation event, ryanodine receptor-serine 2814 phosphorylation by Ca2+/calmodulin-dependent protein kinase II, that is required to unmask the arrhythmic potential of CPVT tissues. CONCLUSIONS: Our study illuminates the molecular and cellular pathogenesis of CPVT and reveals a critical role of calmodulin-dependent protein kinase II-dependent reentry in the tissue-scale mechanism of this disease. We anticipate that this approach will be useful for modeling other inherited and acquired cardiac arrhythmias.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Engenharia Tecidual/métodos , Potenciais de Ação/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/química , Miócitos Cardíacos/química , Optogenética/métodos
4.
Nat Biomed Eng ; 2(12): 930-941, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-31015723

RESUMO

Laboratory studies of the heart use cell and tissue cultures to dissect heart function yet rely on animal models to measure pressure and volume dynamics. Here, we report tissue-engineered scale models of the human left ventricle, made of nanofibrous scaffolds that promote native-like anisotropic myocardial tissue genesis and chamber-level contractile function. Incorporating neonatal rat ventricular myocytes or cardiomyocytes derived from human induced pluripotent stem cells, the tissue-engineered ventricles have a diastolic chamber volume of ~500 µl (comparable to that of the native rat ventricle and approximately 1/250 the size of the human ventricle), and ejection fractions and contractile work 50-250 times smaller and 104-108 times smaller than the corresponding values for rodent and human ventricles, respectively. We also measured tissue coverage and alignment, calcium-transient propagation and pressure-volume loops in the presence or absence of test compounds. Moreover, we describe an instrumented bioreactor with ventricular-assist capabilities, and provide a proof-of-concept disease model of structural arrhythmia. The model ventricles can be evaluated with the same assays used in animal models and in clinical settings.


Assuntos
Ventrículos do Coração/citologia , Modelos Biológicos , Engenharia Tecidual , Animais , Arritmias Cardíacas/patologia , Desenho Assistido por Computador , Matriz Extracelular/química , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Contração Miocárdica , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Nanofibras/química , Polímeros/química , Ratos , Ratos Sprague-Dawley , Alicerces Teciduais/química , Função Ventricular
5.
Biomaterials ; 133: 229-241, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28445803

RESUMO

Tissue engineered scaffolds have emerged as a promising solution for heart valve replacement because of their potential for regeneration. However, traditional heart valve tissue engineering has relied on resource-intensive, cell-based manufacturing, which increases cost and hinders clinical translation. To overcome these limitations, in situ tissue engineering approaches aim to develop scaffold materials and manufacturing processes that elicit endogenous tissue remodeling and repair. Yet despite recent advances in synthetic materials manufacturing, there remains a lack of cell-free, automated approaches for rapidly producing biomimetic heart valve scaffolds. Here, we designed a jet spinning process for the rapid and automated fabrication of fibrous heart valve scaffolds. The composition, multiscale architecture, and mechanical properties of the scaffolds were tailored to mimic that of the native leaflet fibrosa and assembled into three dimensional, semilunar valve structures. We demonstrated controlled modulation of these scaffold parameters and show initial biocompatibility and functionality in vitro. Valves were minimally-invasively deployed via transapical access to the pulmonary valve position in an ovine model and shown to be functional for 15 h.


Assuntos
Materiais Biocompatíveis , Biomimética/métodos , Valvas Cardíacas/cirurgia , Alicerces Teciduais , Animais , Próteses Valvulares Cardíacas , Nanofibras , Ovinos , Engenharia Tecidual/métodos
6.
Biomaterials ; 122: 48-62, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28107664

RESUMO

To date, clinical success of cardiac cell-therapies remains limited. To enhance the cardioreparative properties of stem cells, the concept of lineage-specification through cardiopoietic-guidance has been recently suggested. However, so far, only results from murine studies and from a clinical pilot-trial in chronic heart-failure (CHF) are available, while systematic evidence of its therapeutic-efficacy is still lacking. Importantly, also no data from large animals or for other indications are available. Therefore, we here investigate the therapeutic-efficacy of human cardiopoietic stem cells in the treatment of post-infarction LV-dysfunction using a translational pig-model. Using growth-factor priming, lineage-specification of human bone-marrow derived MSCs was achieved to generate cardiopoietic stem cells according to GMP-compliant protocols. Thereafter, pigs with post-infarction LV-dysfunction (sub-acute phase;1-month) were randomized to either receive transcatheter NOGA 3D electromechanical-mapping guided intramyocardial transplantation of cardiopoietic cells or saline (control). After 30days, cardiac MRI (cMRI) was performed for functional evaluation and in-vivo cell-tracking. This approach was coupled with a comprehensive post-mortem cell-fate and mode-of-repair analysis. Cardiopoietic cell therapy was safe and ejection-fraction was significantly higher when compared to controls (p = 0.012). It further prevented maladaptive LV-remodeling and revealed a significantly lower relative and total infarct-size (p = 0.043 and p = 0.012). As in-vivo tracking and post-mortem analysis displayed only limited intramyocardial cardiopoietic cell-integration, the significant induction of neo-angiogenesis (∼40% higher; p = 0.003) and recruitment of endogenous progenitors (∼2.5x higher; p = 0.008) to the infarct border-zone appeared to be the major modes-of-repair. This is the first report using a pre-clinical large animal-model to demonstrate the safety and efficacy of cardiopoietic stem cells for the treatment of post-infarction LV-dysfunction to prevent negative LV-remodeling and subsequent CHF. It further provides insight into post-delivery cardiopoietic cell-fate and suggests the mechanisms of cardiopoietic cell-induced cardiac-repair. The adoption of GMP-/GLP-compliant methodologies may accelerate the translation into a phase-I clinical-trial in patients with post-ischemic LV-dysfunction broadening the current indication of this interesting cell-type.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/terapia , Animais , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Infarto do Miocárdio/complicações , Recuperação de Função Fisiológica , Suínos , Resultado do Tratamento , Disfunção Ventricular Esquerda/etiologia , Remodelação Ventricular
7.
NPJ Regen Med ; 2: 17, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29302353

RESUMO

Acute myocardial infarction and chronic heart failure rank among the major causes of morbidity and mortality worldwide. Except for heart transplantation, current therapy options only treat the symptoms but do not cure the disease. Stem cell-based therapies represent a possible paradigm shift for cardiac repair. However, most of the first-generation approaches displayed heterogeneous clinical outcomes regarding efficacy. Stemming from the desire to closely match the target organ, second-generation cell types were introduced and rapidly moved from bench to bedside. Unfortunately, debates remain around the benefit of stem cell therapy, optimal trial design parameters, and the ideal cell type. Aiming at highlighting controversies, this article provides a critical overview of the translation of first-generation and second-generation cell types. It further emphasizes the importance of understanding the mechanisms of cardiac repair and the lessons learned from first-generation trials, in order to improve cell-based therapies and to potentially finally implement cell-free therapies.

8.
Nat Mater ; 16(3): 303-308, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27775708

RESUMO

Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.


Assuntos
Miocárdio/citologia , Impressão Tridimensional/instrumentação , Análise Serial de Tecidos/instrumentação
9.
J Cell Biol ; 215(1): 47-56, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27697929

RESUMO

Tongue weakness, like all weakness in Duchenne muscular dystrophy (DMD), occurs as a result of contraction-induced muscle damage and deficient muscular repair. Although membrane fragility is known to potentiate injury in DMD, whether muscle stem cells are implicated in deficient muscular repair remains unclear. We hypothesized that DMD myoblasts are less sensitive to cues in the extracellular matrix designed to potentiate structure-function relationships of healthy muscle. To test this hypothesis, we drew inspiration from the tongue and engineered contractile human muscle tissues on thin films. On this platform, DMD myoblasts formed fewer and smaller myotubes and exhibited impaired polarization of the cell nucleus and contractile cytoskeleton when compared with healthy cells. These structural aberrations were reflected in their functional behavior, as engineered tongues from DMD myoblasts failed to achieve the same contractile strength as healthy tongue structures. These data suggest that dystrophic muscle may fail to organize with respect to extracellular cues necessary to potentiate adaptive growth and remodeling.


Assuntos
Modelos Biológicos , Contração Muscular , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Actinas/metabolismo , Anisotropia , Diferenciação Celular , Núcleo Celular/metabolismo , Forma do Núcleo Celular , Pré-Escolar , Citoesqueleto/metabolismo , Humanos , Fibras Musculares Esqueléticas/patologia , Mioblastos/patologia , Engenharia Tecidual , Língua
10.
Transfus Med Hemother ; 43(4): 282-290, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27721704

RESUMO

The incidence of severe valvular dysfunctions (e.g., stenosis and insufficiency) is increasing, leading to over 300,000 valves implanted worldwide yearly. Clinically used heart valve replacements lack the capacity to grow, inherently requiring repetitive and high-risk surgical interventions during childhood. The aim of this review is to present how different tissue engineering strategies can overcome these limitations, providing innovative valve replacements that proved to be able to integrate and remodel in pre-clinical experiments and to have promising results in clinical studies. Upon description of the different types of heart valve tissue engineering (e.g., in vitro, in situ, in vivo, and the pre-seeding approach) we focus on the clinical translation of this technology. In particular, we will deepen the many technical, clinical, and regulatory aspects that need to be solved to endure the clinical adaptation and the commercialization of these promising regenerative valves.

11.
Science ; 353(6295): 158-62, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27387948

RESUMO

Inspired by the relatively simple morphological blueprint provided by batoid fish such as stingrays and skates, we created a biohybrid system that enables an artificial animal--a tissue-engineered ray--to swim and phototactically follow a light cue. By patterning dissociated rat cardiomyocytes on an elastomeric body enclosing a microfabricated gold skeleton, we replicated fish morphology at 1/10 scale and captured basic fin deflection patterns of batoid fish. Optogenetics allows for phototactic guidance, steering, and turning maneuvers. Optical stimulation induced sequential muscle activation via serpentine-patterned muscle circuits, leading to coordinated undulatory swimming. The speed and direction of the ray was controlled by modulating light frequency and by independently eliciting right and left fins, allowing the biohybrid machine to maneuver through an obstacle course.


Assuntos
Luz , Robótica , Rajidae/fisiologia , Natação/fisiologia , Engenharia Tecidual , Nadadeiras de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Sinais (Psicologia) , Músculo Esquelético/fisiologia , Optogenética
12.
J Cell Biol ; 212(4): 389-97, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26858266

RESUMO

The efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (µtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell-derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell-cell junction that degrade force transmission between cells. Moreover, we developed a computational model of µtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell-cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes.


Assuntos
Comunicação Celular , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Células-Tronco/fisiologia , Engenharia Tecidual/métodos , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Simulação por Computador , Adesões Focais/metabolismo , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos BALB C , Modelos Cardiovasculares , Miócitos Cardíacos/transplante , Fenótipo , Cultura Primária de Células , Transplante de Células-Tronco , Estresse Mecânico , Fatores de Tempo
13.
PLoS One ; 11(1): e0146415, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26808388

RESUMO

In vitro disease models offer the ability to study specific systemic features in isolation to better understand underlying mechanisms that lead to dysfunction. Here, we present a cardiac dysfunction model using angiotensin II (ANG II) to elicit pathological responses in a heart-on-a-chip platform that recapitulates native laminar cardiac tissue structure. Our platform, composed of arrays of muscular thin films (MTF), allows for functional comparisons of healthy and diseased tissues by tracking film deflections resulting from contracting tissues. To test our model, we measured gene expression profiles, morphological remodeling, calcium transients, and contractile stress generation in response to ANG II exposure and compared against previous experimental and clinical results. We found that ANG II induced pathological gene expression profiles including over-expression of natriuretic peptide B, Rho GTPase 1, and T-type calcium channels. ANG II exposure also increased proarrhythmic early after depolarization events and significantly reduced peak systolic stresses. Although ANG II has been shown to induce structural remodeling, we control tissue architecture via microcontact printing, and show pathological genetic profiles and functional impairment precede significant morphological changes. We assert that our in vitro model is a useful tool for evaluating tissue health and can serve as a platform for studying disease mechanisms and identifying novel therapeutics.


Assuntos
Angiotensina II/farmacologia , Expressão Gênica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Perfilação da Expressão Gênica , Modelos Teóricos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ratos
14.
Biomed Res Int ; 2016: 4081638, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28044126

RESUMO

Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction.


Assuntos
Mecanotransdução Celular/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Animais , Metabolismo Energético/fisiologia , Acoplamento Excitação-Contração/fisiologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Retículo Sarcoplasmático/fisiologia
15.
Circ Res ; 116(1): 150-66, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25552694

RESUMO

This review article discusses the mechanisms of cardiomyogenesis in the adult heart. They include the re-entry of cardiomyocytes into the cell cycle; dedifferentiation of pre-existing cardiomyocytes, which assume an immature replicating cell phenotype; transdifferentiation of hematopoietic stem cells into cardiomyocytes; and cardiomyocytes derived from activation and lineage specification of resident cardiac stem cells. The recognition of the origin of cardiomyocytes is of critical importance for the development of strategies capable of enhancing the growth response of the myocardium; in fact, cell therapy for the decompensated heart has to be based on the acquisition of this fundamental biological knowledge.


Assuntos
Coração/crescimento & desenvolvimento , Células-Tronco Hematopoéticas/fisiologia , Miócitos Cardíacos/fisiologia , Organogênese/fisiologia , Adulto , Animais , Diferenciação Celular/fisiologia , Humanos
16.
Am J Physiol Heart Circ Physiol ; 306(11): H1525-39, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24682394

RESUMO

Concentric hypertrophy is characterized by ventricular wall thickening, fibrosis, and decreased myocyte length-to-width aspect ratio. Ventricular thickening is considered compensatory because it reduces wall stress, but the functional consequences of cell shape remodeling in this pathological setting are unknown. We hypothesized that decreases in myocyte aspect ratio allow myocytes to maximize contractility when the extracellular matrix becomes stiffer due to conditions such as fibrosis. To test this, we engineered neonatal rat ventricular myocytes into rectangles mimicking the 2-D profiles of healthy and hypertrophied myocytes on hydrogels with moderate (13 kPa) and high (90 kPa) elastic moduli. Actin alignment was unaffected by matrix elasticity, but sarcomere content was typically higher on stiff gels. Microtubule polymerization was higher on stiff gels, implying increased intracellular elastic modulus. On moderate gels, myocytes with moderate aspect ratios (∼7:1) generated the most peak systolic work compared with other cell shapes. However, on stiffer gels, low aspect ratios (∼2:1) generated the most peak systolic work. To compare the relative contributions of intracellular vs. extracellular elasticity to contractility, we developed an analytical model and used our experimental data to fit unknown parameters. Our model predicted that matrix elasticity dominates over intracellular elasticity, suggesting that the extracellular matrix may potentially be a more effective therapeutic target than microtubules. Our data and model suggest that myocytes with lower aspect ratios have a functional advantage when the elasticity of the extracellular matrix decreases due to conditions such as fibrosis, highlighting the role of the extracellular matrix in cardiac disease.


Assuntos
Forma Celular/fisiologia , Matriz Extracelular/fisiologia , Contração Muscular/fisiologia , Miócitos Cardíacos/fisiologia , Actinas/fisiologia , Animais , Elasticidade , Hidrogéis , Miócitos Cardíacos/citologia , Ratos , Ratos Sprague-Dawley
17.
Integr Biol (Camb) ; 6(2): 152-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24406783

RESUMO

Vascular smooth muscle cells in muscular arteries are more elongated than those in elastic arteries. Previously, we reported changes in the contractility of engineered vascular smooth muscle tissue that appeared to be correlated with the shape of the constituent cells, supporting the commonly held belief that elongated muscle geometry may allow for the better contractile tone modulation required in response to changes in blood flow and pressure. To test this hypothesis more rigorously, we developed an in vitro model by engineering human vascular smooth muscle cells to take on the same shapes as those seen in elastic and muscular arteries and measured their contraction during stimulation with endothelin-1. We found that in the engineered cells, actin alignment and nuclear eccentricity increased as the shape of the cell elongated. Smooth muscle cells with elongated shapes exhibited lower contractile strength but greater percentage increase in contraction after endothelin-1 stimulation. We analysed the relationship between smooth muscle contractility and subcellular architecture and found that changes in contractility were correlated with actin alignment and nuclear shape. These results suggest that elongated smooth muscle cells facilitate muscular artery tone modulation by increasing its dynamic contractile range.


Assuntos
Citoesqueleto/fisiologia , Endotelina-1/farmacologia , Contração Muscular/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Citoesqueleto/ultraestrutura , Humanos , Microscopia de Fluorescência , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/ultraestrutura , Engenharia Tecidual
18.
J Mol Cell Cardiol ; 48(1): 112-21, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19835882

RESUMO

We have developed a detailed mathematical model for Ca handling and ionic currents in the human ventricular myocyte. Our aims were to: (1) simulate basic excitation-contraction coupling phenomena; (2) use realistic repolarizing K current densities; (3) reach steady-state. The model relies on the framework of the rabbit myocyte model previously developed by our group, with subsarcolemmal and junctional compartments where ion channels sense higher [Ca] vs. bulk cytosol. Ion channels and transporters have been modeled on the basis of the most recent experimental data from human ventricular myocytes. Rapidly and slowly inactivating components of I(to) have been formulated to differentiate between endocardial and epicardial myocytes. Transmural gradients of Ca handling proteins and Na pump were also simulated. The model has been validated against a wide set of experimental data including action potential duration (APD) adaptation and restitution, frequency-dependent increase in Ca transient peak and [Na](i). Interestingly, Na accumulation at fast heart rate is a major determinant of APD shortening, via outward shifts in Na pump and Na-Ca exchange currents. We investigated the effects of blocking K currents on APD and repolarization reserve: I(Ks) block does not affect the former and slightly reduces the latter; I(K1) blockade modestly increases APD and more strongly reduces repolarization reserve; I(Kr) blockers significantly prolong APD, an effect exacerbated as pacing frequency is decreased, in good agreement with experimental results in human myocytes. We conclude that this model provides a useful framework to explore excitation-contraction coupling mechanisms and repolarization abnormalities at the single myocyte level.


Assuntos
Potenciais de Ação/fisiologia , Simulação por Computador , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cálcio/metabolismo , Humanos , Potássio/metabolismo , Coelhos , Sódio/metabolismo
19.
J Mol Cell Cardiol ; 46(3): 332-42, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19121322

RESUMO

Reduction in [Ca2+]o prolongs the AP in ventricular cardiomyocytes and the QTc interval in patients. Although this phenomenon is relevant to arrhythmogenesis in the clinical setting, its mechanisms are counterintuitive and incompletely understood. To evaluate in silico the mechanisms of APD modulation by [Ca2+]o in human cardiomyocytes. We implemented the Ten Tusscher-Noble-Noble-Panfilov model of the human ventricular myocyte and modified the formulations of the rapidly and slowly activating delayed rectifier K+ currents (IKr and IKs) and L-type Ca2+ current (ICaL) to incorporate their known sensitivity to intra- or extracellular Ca2+. Simulations were run with the original and modified models at variable [Ca2+]o in the clinically relevant 1 to 3 mM range. The original model responds with APD shortening to decrease in [Ca2+]o, i.e. opposite to the experimental observations. Incorporation of Ca2+ dependency of K+ currents cannot reproduce the inverse relation between APD and [Ca2+]o. Only when ICaL inactivation process was modified, by enhancing its dependency on Ca2+, simulations predict APD prolongation at lower [Ca2+]o. Although Ca2+-dependent ICaL inactivation is the primary mechanism, secondary changes in electrogenic Ca2+ transport (by Na+/Ca2+ exchanger and plasmalemmal Ca2+-ATPase) contribute to the reversal of APD dependency on [Ca2+]o. This theoretical investigation points to Ca2+-dependent inactivation of ICaL as a mechanism primarily responsible for the dependency of APD on [Ca2+]o. The modifications implemented here make the model more suitable to analyze repolarization mechanisms when Ca2+ levels are altered.


Assuntos
Potenciais de Ação/fisiologia , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Ventrículos do Coração/citologia , Humanos , Transporte de Íons/fisiologia , Miócitos Cardíacos/citologia , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...