Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 166, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231443

RESUMO

BACKGROUND: The biogenic synthesis of metallic nanoparticles is a green alternative that reduces the toxicity of this nanomaterials and may enable a synergy between the metallic core and the biomolecules employed in the process enhancing biological activity. The aim of this study was to synthesize biogenic titanium nanoparticles using the filtrate of the fungus Trichoderma harzianum as a stabilizing agent, to obtain a potential biological activity against phytopathogens and mainly stimulate the growth of T. harzianum, enhancing its efficacy for biological control. RESULTS: The synthesis was successful and reproductive structures remained in the suspension, showing faster and larger mycelial growth compared to commercial T. harzianum and filtrate. The nanoparticles with residual T. harzianum growth showed inhibitory potential against Sclerotinia sclerotiorum mycelial growth and the formation of new resistant structures. A great chitinolytic activity of the nanoparticles was observed in comparison with T. harzianum. In regard to toxicity evaluation, an absence of cytotoxicity and a protective effect of the nanoparticles was observed through MTT and Trypan blue assay. No genotoxicity was observed on V79-4 and 3T3 cell lines while HaCat showed higher sensitivity. Microorganisms of agricultural importance were not affected by the exposure to the nanoparticles, however a decrease in the number of nitrogen cycling bacteria was observed. In regard to phytotoxicity, the nanoparticles did not cause morphological and biochemical changes on soybean plants. CONCLUSION: The production of biogenic nanoparticles was an essential factor in stimulating or maintaining structures that are important for biological control, showing that this may be an essential strategy to stimulate the growth of biocontrol organisms to promote more sustainable agriculture.


Assuntos
Hypocreales , Nanopartículas Metálicas , Trichoderma , Trichoderma/química , Trichoderma/metabolismo , Titânio/farmacologia , Titânio/metabolismo , Nanopartículas Metálicas/toxicidade
2.
J Nanobiotechnology ; 19(1): 53, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627148

RESUMO

BACKGROUND: Biogenic nanoparticles possess a capping of biomolecules derived from the organism employed in the synthesis, which contributes to their stability and biological activity. These nanoparticles have been highlighted for the control of phytopathogens, so there is a need to understand their composition, mechanisms of action, and toxicity. This study aimed to investigate the importance of the capping and compare the effects of capped and uncapped biogenic silver nanoparticles synthesized using the filtrate of Trichoderma harzianum against the phytopathogenic fungus Sclerotinia sclerotiorum. Capping removal, investigation of the composition of the capping and physico-chemical characterization of the capped and uncapped nanoparticles were performed. The effects of the nanoparticles on S. sclerotiorum were evaluated in vitro. Cytotoxicity and genotoxicity of the nanoparticles on different cell lines and its effects on nontarget microorganisms were also investigated. RESULTS: The capped and uncapped nanoparticles showed spherical morphology, with greater diameter of the uncapped ones. Functional groups of biomolecules, protein bands and the hydrolytic enzymes NAGase, ß-1,3-glucanase, chitinase and acid protease from T. harzianum were detected in the capping. The capped nanoparticles showed great inhibitory potential against S. sclerotiorum, while the uncapped nanoparticles were ineffective. There was no difference in cytotoxicity comparing capped and uncapped nanoparticles, however higher genotoxicity of the uncapped nanoparticles was observed towards the cell lines. Regarding the effects on nontarget microorganisms, in the minimal inhibitory concentration assay only the capped nanoparticles inhibited microorganisms of agricultural importance, while in the molecular analysis of the soil microbiota there were major changes in the soils exposed to the uncapped nanoparticles. CONCLUSIONS: The results suggest that the capping played an important role in controlling nanoparticle size and contributed to the biological activity of the nanoparticles against S. sclerotiorum. This study opens perspectives for investigations concerning the application of these nanoparticles for the control of phytopathogens.


Assuntos
Ascomicetos/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Animais , Linhagem Celular , Humanos , Hypocreales/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microbiologia do Solo
3.
Ecotoxicol Environ Saf ; 196: 110560, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32247955

RESUMO

Lithobates catesbeianus tadpoles were exposed to 1 µg L-1 of zinc (Zn), copper (Cu) and cadmium (Cd) alone or combined (1:1 and 1:1:1) for 2 and 16 days. Results showed a significant increase in the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities in the liver, kidney and muscle (except for GPx) in the groups exposed to metal either alone or co-exposed after 2 days compared to the control. After 16 days, SOD, CAT and GST activities decreased significantly in the liver and kidney and GPx activity increased in the liver. Reduced glutathione (GSH) increased in the liver and kidney following combined exposure and decreased after 2 days of metal exposure in the muscle. There were significant increases in lipid hydroperoxide (LPO) levels in the liver, kidney and muscle (2 and 16 days), with the highest levels after metal co-exposure. Cholinesterase (ChE) activity increased significantly in the brain after 2 days of exposure but decreased in the brain (16 days) and muscle (2 days) after exposure to metals, alone and combined. The current study highlighted that the antioxidant system of L. catesbeianus was sensitive to metals and specially to the co-exposure of the three metals, despite presenting differences in the response among tissues. In addition, tadpoles were sensitive at both periods of exposure, but in different modes with stress response (activation, up-regulation) at 2 days and oppression (down-regulation) at 16 days.


Assuntos
Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Exposição Ambiental/análise , Larva/efeitos dos fármacos , Metais Pesados/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cádmio/toxicidade , Cobre/toxicidade , Rim/efeitos dos fármacos , Rim/metabolismo , Larva/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metais Pesados/metabolismo , Rana catesbeiana , Zinco/toxicidade
4.
Sci Rep ; 9(1): 14351, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586116

RESUMO

Biogenic synthesis of silver nanoparticles employing fungi offers advantages, including the formation of a capping from fungal biomolecules, which provides stability and can contribute to biological activity. In this work, silver nanoparticles were synthesized using Trichoderma harzianum cultivated with (AgNP-TS) and without enzymatic stimulation (AgNP-T) by the cell wall of Sclerotinia sclerotiorum. The nanoparticles were evaluated for the control of S. sclerotiorum. The specific activity of the T. harzianum hydrolytic enzymes were determined in the filtrates and nanoparticles. Cytotoxicity and genotoxicity were also evaluated. Both the nanoparticles exhibited inhibitory activity towards S. sclerotiorum, with no new sclerotia development, however AgNP-TS was more effective against mycelial growth. Both the filtrates and the nanoparticles showed specific enzymatic activity. Low levels of cytotoxicity and genotoxicity were observed. This study opens perspectives for further exploration of fungal biogenic nanoparticles, indicating their use for the control of S. sclerotiorum and other agricultural pests.


Assuntos
Fungicidas Industriais/metabolismo , Nanopartículas Metálicas/toxicidade , Doenças das Plantas/prevenção & controle , Prata/metabolismo , Trichoderma/metabolismo , Ascomicetos/enzimologia , Ascomicetos/patogenicidade , Parede Celular/enzimologia , Produção Agrícola , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/toxicidade , Micélio/efeitos dos fármacos , Doenças das Plantas/microbiologia , Prata/toxicidade
5.
Sci Rep ; 8(1): 12397, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120279

RESUMO

Silver nanoparticles (AgNPs) are known mainly because of their bactericidal properties. Among the different types of synthesis, there is the biogenic synthesis, which allows the synergy between the nanocomposites and substances from the organism employed for the synthesis. This study describes the synthesis of AgNPs using infusion of roots (AgNpR) and extract (AgNpE) of the plant Althaea officinalis. After the synthesis through reduction of silver nitrate with compounds of A. officinalis, physico-chemical analyzes were performed by UV-Vis spectroscopy, nanoparticles tracking analysis (NTA), dynamic light scattering (DLS) and scanning electron microscopy (SEM). Toxicity was evaluated through Allium cepa assay, comet test with cell lines, cell viability by mitochondrial activity and image cytometry and minimal inhibitory concentration on pathogenic microorganisms. Biochemical analyzes (CAT - catalase, GPx - glutathione peroxidase e GST - glutationa S-transferase) and genotoxicity evaluation in vivo on Zebrafish were also performed. AgNpE and AgNpR showed size of 157 ± 11 nm and 293 ± 12 nm, polydispersity of 0.47 ± 0.08 and 0.25 ± 0.01, and zeta potential of 20.4 ± 1.4 and 26.5 ± 1.2 mV, respectively. With regard to toxicity, the AgNpE were the most toxic when compared with AgNpR. Biochemical analyzes on fish showed increase of CAT activity in most of the organs, whereas GPx showed few changes and the activity of GST decreased. Also regarding to bactericidal activity, both nanoparticles were effective, however AgNpR showed greater activity. Althaea officinalis can be employed as reducing agent for the synthesis of silver nanoparticles, although it is necessary to consider its potential toxicity and ecotoxicity.


Assuntos
Althaea/química , Nanopartículas Metálicas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Substâncias Redutoras/química , Substâncias Redutoras/farmacologia , Prata , Animais , Anti-Infecciosos , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Dano ao DNA/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Camundongos , Testes de Sensibilidade Microbiana , Extratos Vegetais/toxicidade , Substâncias Redutoras/toxicidade , Prata/química , Toxicologia/métodos , Peixe-Zebra
6.
Sci Rep ; 8(1): 7623, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769620

RESUMO

Pesticides are the main tactics for pest control because they reduce the pest population very fast and their efficiency does not depend on abiotic factors. However, the indiscriminate use of these substances can speed up the development of resistant populations and causing environmental contamination. Therefore, alternative methods of pest control are sought, such as the use of botanical compounds. Nanoencapsulation of volatile compounds has been shown to be an important tool that can be used to overcome the lack of stability of these compounds. In this work, we describe the preparation and characterization of chitosan nanoparticles functionalized with ß-cyclodextrin containing carvacrol and linalool. The toxicity and biological activity were evaluated. Decreases of toxicity were observed when the compounds were nanoencapsulated. The nanoparticles presented insecticidal activity against the species Helicoverpa armigera (corn earworm) and Tetranychus urticae (spider mite). In addition, repellent activity and reduction in oviposition were observed for the mites.


Assuntos
Quitosana/química , Inseticidas/farmacologia , Monoterpenos/farmacologia , Mariposas/crescimento & desenvolvimento , Nanopartículas/administração & dosagem , Controle Biológico de Vetores , Tetranychidae/crescimento & desenvolvimento , beta-Ciclodextrinas/química , Monoterpenos Acíclicos , Animais , Agentes de Controle Biológico/química , Agentes de Controle Biológico/farmacologia , Sobrevivência Celular , Cimenos , Mariposas/efeitos dos fármacos , Nanopartículas/química , Tetranychidae/efeitos dos fármacos
7.
Sci Rep ; 7(1): 5929, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724950

RESUMO

In this study, we prepared, characterized, and performed toxicity analyses of poly(ε-caprolactone) nanocapsules loaded with neem oil. Three formulations were prepared by the emulsion/solvent evaporation method. The nanocapsules showed a mean size distribution around 400 nm, with polydispersity below 0.2 and were stable for 120 days. Cytotoxicity and genotoxicity results showed an increase in toxicity of the oleic acid + neem formulations according to the amount of oleic acid used. The minimum inhibitory concentrations demonstrated that all the formulations containing neem oil were active. The nanocapsules containing neem oil did not affect the soil microbiota during 300 days of exposure compared to the control. Phytotoxicity studies indicated that NC_20 (200 mg of neem oil) did not affect the net photosynthesis and stomatal conductance of maize plants, whereas use of NC_10 (100:100 of neem:oleic acid) and NC_15 (150:50 of neem:oleic acid) led to negative effects on these physiological parameters. Hence, the use of oleic acid as a complement in the nanocapsules was not a good strategy, since the nanocapsules that only contained neem oil showed lower toxicity. These results demonstrate that evaluation of the toxicity of nanopesticides is essential for the development of environmentally friendly formulations intended for applications in agriculture.


Assuntos
Azadirachta/química , Glicerídeos/toxicidade , Nanocápsulas/química , Terpenos/toxicidade , Testes de Toxicidade , Animais , Linhagem Celular , Aberrações Cromossômicas , Ensaio Cometa , Desnitrificação/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Camundongos , Testes de Sensibilidade Microbiana , Mutagênicos/toxicidade , Nanocápsulas/ultraestrutura , Ciclo do Nitrogênio/efeitos dos fármacos , Cebolas/química , Tamanho da Partícula , Fotossíntese/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Microbiologia do Solo , Eletricidade Estática , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
8.
Sci Rep ; 7: 44421, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300141

RESUMO

White mold is an agricultural disease caused by the fungus Sclerotinia sclerotiorum, which affects important crops. There are different ways of controlling this organism, but none provides inhibition of its resistance structures (sclerotia). Nanotechnology offers promising applications in agricultural area. Here, silver nanoparticles were biogenically synthesized using the fungus Trichoderma harzianum and characterized. Cytotoxicity and genotoxicity were evaluated, and the nanoparticles were initially tested against white mold sclerotia. Their effects on soybean were also investigated with no effects observed. The nanoparticles showed potential against S. sclerotiorum, inhibiting sclerotia germination and mycelial growth. Nanoparticle characterization data indicated spherical morphology, satisfactory polydispersity and size distribution. Cytotoxicity and genotoxicity assays showed that the nanoparticles caused both the effects, although, the most toxic concentrations were above those applied for white mold control. Given the potential of the nanoparticles against S. sclerotiorum, we conclude that this study presents a first step for a new alternative in white mold control.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Micélio/efeitos dos fármacos , Prata/farmacologia , Trichoderma/química , Células A549 , Animais , Antifúngicos/química , Ascomicetos/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Células HeLa , Humanos , Nanopartículas Metálicas/química , Camundongos , Testes de Sensibilidade Microbiana , Índice Mitótico , Micélio/crescimento & desenvolvimento , Células NIH 3T3 , Cebolas/citologia , Cebolas/efeitos dos fármacos , Oxirredução , Tamanho da Partícula , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Prata/química , Glycine max/efeitos dos fármacos , Glycine max/microbiologia , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...