Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 281(6): H2500-10, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11709417

RESUMO

Recent investigations have established a role for the beta II-isoform of protein kinase C (PKC beta II) in the induction of cardiac hypertrophy and failure. Although receptors for activated C kinase (RACKs) have been shown to direct PKC signal transduction, the mechanism through which RACK1, a selective PKC beta II RACK, participates in PKC beta II-mediated cardiac hypertrophy and failure remains undefined. We have previously reported that PKC epsilon activation modulates the expression of RACKs, and that altered epsilon-isoform of PKC (PKC epsilon)-RACK interactions may facilitate the genesis of cardiac phenotypes in mice. Here, we present evidence that high levels of PKC epsilon activity are commensurate with impaired left ventricular function (dP/dt = 6,074 +/- 248 mmHg/s in control vs. 3,784 +/- 269 mmHg/s in transgenic) and significant myocardial hypertrophy. More importantly, we demonstrate that high levels of PKC epsilon activation induce a significant colocalization of PKC beta II with RACK1 (154 +/- 7% of control) and a marked redistribution of PKC beta II to the particulate fraction (17 +/- 2% of total PKC beta II in control mice vs. 49 +/- 5% of total PKC beta II in hypertrophied mice), without compensatory changes of the other eight PKC isoforms present in the mouse heart. This enhanced PKC beta II activation is coupled with increased RACK1 expression and PKC beta II-RACK1 interactions, demonstrating PKC epsilon-induced PKC beta II signaling via a RACK1-dependent mechanism. Taken together with our previous findings regarding enhanced RACK1 expression and PKC epsilon-RACK1 interactions in the setting of cardiac hypertrophy and failure, these results suggest that RACK1 serves as a nexus for at least two isoforms of PKC, the epsilon-isoform and the beta II-isoform, thus coordinating PKC-mediated hypertrophic signaling.


Assuntos
Insuficiência Cardíaca/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Miocárdio/enzimologia , Peptídeos/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Actinas/genética , Animais , Cardiomegalia/metabolismo , Expressão Gênica/fisiologia , Humanos , Células Jurkat , Camundongos , Camundongos Transgênicos , Mutagênese/fisiologia , Contração Miocárdica/fisiologia , Cadeias Pesadas de Miosina/genética , Mapeamento de Interação de Proteínas , Proteína Quinase C beta , Proteína Quinase C-épsilon , Receptores de Quinase C Ativada , Transdução de Sinais/fisiologia
2.
Basic Res Cardiol ; 96(3): 207-18, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11403414

RESUMO

In the 15 years since the first publication on ischemic preconditioning (PC), our knowledge of this phenomenon has increased exponentially. While the original studies described the early phase of ischemic PC, we now know that a second or late phase of ischemic PC also exists. In particular, the late phase of PC is triggered by factors such as adenosine, opioids, radicals, and nitric oxide. These factors in turn initiate a molecular chain reaction, which includes activation of serine/threonine kinases, tyrosine kinases, and mitogen-activated protein kinases. Subsequently, this cascade of reactions modulates a plethora of cardioprotective proteins including heat shock proteins, KATP channels, nitric oxide synthase, cyclooxygenase-2, and antioxidants. However, despite this phenomenal amount of information, the construction of a unifying hypothesis describing the signaling mechanism of late PC has proved challenging. The purpose of this article, therefore, is to review the current literature and hypothesis regarding the signaling system in the late phase of ischemic PC, to tackle areas of controversy within this model, and to address potential future directions of investigation that will hopefully promote the generation of a unifying paradigm.


Assuntos
Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/fisiopatologia , Proteínas Quinases/fisiologia , Previsões , Proteínas de Choque Térmico/farmacologia , Proteínas de Choque Térmico/fisiologia , Humanos , Infarto do Miocárdio/metabolismo , Proteína Quinase C/farmacologia , Proteína Quinase C/fisiologia , Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/farmacologia , Proteínas Tirosina Quinases/fisiologia , Transdução de Sinais/fisiologia
3.
Circ Res ; 88(12): 1306-13, 2001 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-11420308

RESUMO

An essential role for protein kinase C epsilon (PKCepsilon) has been shown in multiple forms of cardioprotection; however, there is a distinct paucity of information concerning the signaling architecture that is responsible for the manifestation of a protective phenotype. We and others have recently shown that signal transduction may proceed via the formation of signaling complexes (Circ Res. 2001;88:59-62). In order to understand if the assembly of multiprotein complexes is the manner by which signaling is conducted in cardioprotection, we designed a series of experiments to characterize the associations of Src tyrosine kinase with PKCepsilon in a conscious rabbit model of nitric oxide (NO)-induced late preconditioning. Our data demonstrate that PKCepsilon and Src can form functional signaling modules in vitro: PKCepsilon interacts with Src; the association with PKCepsilon activates Src; and adult cardiac cells receiving recombinant adenoviruses encoding PKCepsilon exhibit increased Src activity. Furthermore, our results show that NO-induced late preconditioning involved PKCepsilon-Src module formation and enhanced the enzymatic activity of PKCepsilon-associated Src. Inhibition of PKC blocked cardioprotection, module formation, and PKCepsilon-associated Src activity, providing direct evidence for a functional role of the PKCepsilon-Src module in the orchestration of NO-induced cardioprotection in conscious rabbits.


Assuntos
Precondicionamento Isquêmico Miocárdico , Isoenzimas/metabolismo , Óxido Nítrico/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo , Animais , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/genética , Isoenzimas/genética , Substâncias Macromoleculares , Camundongos , Complexos Multiproteicos , Miocárdio/citologia , Miocárdio/metabolismo , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , Compostos Nitrosos/farmacologia , Ligação Proteica/fisiologia , Proteína Quinase C/genética , Proteína Quinase C-épsilon , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Quinases da Família src/genética
4.
Am J Physiol Heart Circ Physiol ; 280(3): H946-55, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11179034

RESUMO

Receptors for activated C kinase (RACKs) have been shown to facilitate activation of protein kinase C (PKC). However, it is unknown whether PKC activation modulates RACK protein expression and PKC-RACK interactions. This issue was studied in two PKCepsilon transgenic lines exhibiting dichotomous cardiac phenotypes: one exhibits increased resistance to myocardial ischemia (cardioprotected phenotype) induced by a modest increase in PKCepsilon activity (228 +/- 23% of control), whereas the other exhibits cardiac hypertrophy and failure (hypertrophied phenotype) induced by a marked increase in PKCepsilon activity (452 +/- 28% of control). Our data demonstrate that activation of PKC modulates the expression of RACK isotypes and PKC-RACK interactions in a PKCepsilon activity- and dosage-dependent fashion. We found that, in mice displaying the cardioprotected phenotype, activation of PKCepsilon enhanced RACK2 expression (178 +/- 13% of control) and particulate PKCepsilon-RACK2 protein-protein interactions (178 +/- 18% of control). In contrast, in mice displaying the hypertrophied phenotype, there was not only an increase in RACK2 expression (330 +/- 33% of control) and particulate PKCepsilon-RACK2 interactions (154 +/- 14% of control) but also in RACK1 protein expression (174 +/- 10% of control). Most notably, PKCepsilon-RACK1 interactions were identified in this line. With the use of transgenic mice expressing a dominant negative PKCepsilon, we found that the changes in RACK expression as well as the attending cardiac phenotypes were dependent on PKCepsilon activity. Our observations demonstrate that RACK expression is dynamically regulated by PKCepsilon and suggest that differential patterns of PKCepsilon-RACK interactions may be important determinants of PKCepsilon-dependent cardiac phenotypes.


Assuntos
Isoenzimas/genética , Isoenzimas/metabolismo , Miocárdio/enzimologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos , Ligação Competitiva/fisiologia , Cardiomegalia/metabolismo , Regulação Enzimológica da Expressão Gênica , Ligantes , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Dados de Sequência Molecular , Fenótipo , Proteína Quinase C-épsilon , Receptores de Quinase C Ativada
5.
Endothelium ; 7(2): 83-92, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10865936

RESUMO

Dietary copper deficiency significantly attenuates nitric oxide (NO)-mediated vascular smooth muscle relaxation and vasodilation. There is evidence for both increased inactivation of the NO radical by superoxide anion, and oxidative damage to the endothelium where NO is produced. The current study was designed to examine the NO synthetic pathway in the endothelium during copper deficiency. Male weanling rats were fed a copper-adequate (CuA, 6.4 mg Cu/kg diet) or copper-deficient (CuD, 0.4 mg Cu/kg diet) diet for four weeks. Cremasteric arterioles (approximately 100 microm diameter) were isolated and used for the experiments. Western blot analysis of the arteriole endothelial nitric oxide synthase (eNOS) concentration did not show a difference between dietary groups. Acetylcholine (Ach)-induced vasodilation was significantly reduced in the CuD group both before and after pretreatment with the eNOS substrate L-arginine. Endothelial intracellular calcium ([Ca2+]i) stimulated by 10(-6) M Ach was significantly inhibited in the arterioles from CuD rats. Coincident with the inhibition of [Ca2+]i and vasodilation was a depression of vascular Cu/Zn-SOD activity and an increase in plasma peroxynitrite activity. These data suggest that endothelial Ca2+ signaling and agonist-stimulated NO-mediated vascular dilation are likely reduced by increased oxidative damage in copper-deficient rats.


Assuntos
Acetilcolina/farmacologia , Cálcio/metabolismo , Cobre/deficiência , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Animais , Arginina/metabolismo , Arteríolas , Dieta , Endotélio Vascular/enzimologia , Técnicas In Vitro , Masculino , Músculo Esquelético/irrigação sanguínea , Nitratos/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase/fisiologia , Oxidantes/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...