Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769246

RESUMO

The deficiency of survival motor neuron protein (SMN) causes spinal muscular atrophy (SMA), a rare neuromuscular disease that affects different organs. SMN is a key player in RNA metabolism regulation. An intriguing aspect of SMN function is its relationship with plasma membrane-associated proteins. Here, we provide a first demonstration that SMN affects the ATP-binding cassette transporter A1, (ABCA1), a membrane protein critically involved in cholesterol homeostasis. In human fibroblasts, we showed that SMN associates to ABCA1 mRNA, and impacts its subcellular distribution. Consistent with the central role of ABCA1 in the efflux of free cholesterol from cells, we observed a cholesterol accumulation in SMN-depleted human fibroblasts. These results were also confirmed in SMA type I patient-derived fibroblasts. These findings not only validate the intimate connection between SMN and plasma membrane-associated proteins, but also highlight a contribution of dysregulated cholesterol efflux in SMA pathophysiology.


Assuntos
Neurônios Motores , Atrofia Muscular Espinal , Humanos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/metabolismo , Fatores de Transcrição/metabolismo , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675308

RESUMO

Head and neck squamous cell carcinoma (HNSCC) arises from the mucosal epithelium in the oral cavity, pharynx, sino-nasal region, and larynx. Laryngeal squamous cell carcinoma (LSCC) represents one-third of all head and neck cancers. Dysregulated RNA-related pathways define an important molecular signature in this aggressive carcinoma. The Survival Motor Neuron (SMN) protein regulates fundamental aspects of the RNA metabolism but, curiously, its role in cancer is virtually unknown. For the first time, here, we focus on the SMN in the cancer context. We conducted a pilot study in a total of 20 patients with LSCC where the SMN was found overexpressed at both the protein and transcript levels. By a cellular model of human laryngeal carcinoma, we demonstrated that the SMN impacts cancer-relevant behaviors and perturbs key players of cell migration, invasion, and adhesion. Furthermore, in LSCC we showed a physical interaction between the SMN and the epidermal growth factor receptor (EGFR), whose overexpression is an important feature in these tumors. This study proposes the SMN protein as a novel therapeutic target in LSSC and likely in the whole spectrum of HNSCC. Overall, we provide the first analysis of the SMN in human cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/patologia , Projetos Piloto , Neoplasias de Cabeça e Pescoço/genética , Neoplasias Laríngeas/metabolismo , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
3.
EMBO J ; 41(22): e109711, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-35929179

RESUMO

Several kinds of stress promote the formation of three-stranded RNA:DNA hybrids called R-loops. Insufficient clearance of these structures promotes genomic instability and DNA damage, which ultimately contribute to the establishment of cancer phenotypes. Paraspeckle assemblies participate in R-loop resolution and preserve genome stability, however, the main determinants of this mechanism are still unknown. This study finds that in Multiple Myeloma (MM), AATF/Che-1 (Che-1), an RNA-binding protein fundamental to transcription regulation, interacts with paraspeckles via the lncRNA NEAT1_2 (NEAT1) and directly localizes on R-loops. We systematically show that depletion of Che-1 produces a marked accumulation of RNA:DNA hybrids. We provide evidence that such failure to resolve R-loops causes sustained activation of a systemic inflammatory response characterized by an interferon (IFN) gene expression signature. Furthermore, elevated levels of R-loops and of mRNA for paraspeckle genes in patient cells are linearly correlated with Multiple Myeloma progression. Moreover, increased interferon gene expression signature in patients is associated with markedly poor prognosis. Taken together, our study indicates that Che-1/NEAT1 cooperation prevents excessive inflammatory signaling in Multiple Myeloma by facilitating the clearance of R-loops. Further studies on different cancer types are needed to test if this mechanism is ubiquitously conserved and fundamental for cell homeostasis.


Assuntos
Mieloma Múltiplo , RNA Longo não Codificante , Humanos , Estruturas R-Loop , Mieloma Múltiplo/genética , Paraspeckles , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Interferons/genética , Proteínas Repressoras/metabolismo , Proteínas Reguladoras de Apoptose/genética
4.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216211

RESUMO

The ongoing COVID-19 pandemic dictated new priorities in biomedicine research. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a single-stranded positive-sense RNA virus. In this pilot study, we optimized our padlock assay to visualize genomic and subgenomic regions using formalin-fixed paraffin-embedded placental samples obtained from a confirmed case of COVID-19. SARS-CoV-2 RNA was localized in trophoblastic cells. We also checked the presence of the virion by immunolocalization of its glycoprotein spike. In addition, we imaged mitochondria of placental villi keeping in mind that the mitochondrion has been suggested as a potential residence of the SARS-CoV-2 genome. We observed a substantial overlapping of SARS-CoV-2 RNA and mitochondria in trophoblastic cells. This intriguing linkage correlated with an aberrant mitochondrial network. Overall, to the best of our knowledge, this is the first study that provides evidence of colocalization of the SARS-CoV-2 genome and mitochondria in SARS-CoV-2 infected tissue. These findings also support the notion that SARS-CoV-2 infection can reprogram mitochondrial activity in the highly specialized maternal-fetal interface.


Assuntos
Mitocôndrias/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Placenta/virologia , RNA Viral/metabolismo , SARS-CoV-2/genética , Adulto , COVID-19/patologia , COVID-19/virologia , Sondas de DNA/metabolismo , Feminino , Humanos , Projetos Piloto , Placenta/patologia , Gravidez , SARS-CoV-2/isolamento & purificação
5.
Diagnostics (Basel) ; 12(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054342

RESUMO

BACKGROUND: COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a virus belonging to the Coronaviridae family. This disease has spread rapidly around the world and soon became an international public health emergency leading to an unpredicted pressure on the hospital emergency units. Early routine blood biomarkers could be key predicting factors of COVID-19 morbidity and mortality as suggested for C-reactive protein (CRP), IL-6, prothrombin and D-dimer. This study aims to identify other early routine blood biomarkers for COVID-19 severity prediction disclosed directly into the emergency section. METHODS: Our research was conducted on 156 COVID-19 patients hospitalized at the Sapienza University Hospital "Policlinico Umberto I" of Rome, Italy, between March 2020 and April 2020 during the paroxysm's initial phase of the pandemic. In this retrospective study, patients were divided into three groups according to their outcome: (1) emergency group (patients who entered the emergency room and were discharged shortly after because they did not show severe symptoms); (2) intensive care unit (ICU) group (patients who attended the ICU after admission to the emergency unit); (3) the deceased group (patients with a fatal outcome who attended the emergency and, afterward, the ICU units). Routine laboratory tests from medical records were collected when patients were admitted to the emergency unit. We focused on Aspartate transaminase (AST), Alanine transaminase (ALT), Lactate dehydrogenase (LDH), Creatine kinase (CK), Myoglobin (MGB), Ferritin, CRP, and D-dimer. RESULTS: As expected, ANOVA data show an age morbidity increase in both ICU and deceased groups compared with the emergency group. A main effect of morbidity was revealed by ANOVA for all the analyzed parameters with an elevation between the emergency group and the deceased group. Furthermore, a significant increase in LDH, Ferritin, CRP, and D-dimer was also observed between the ICU group and the emergency group and between the deceased group and ICU group. Receiver operating characteristic (ROC) analyses confirmed and extended these findings. CONCLUSIONS: This study suggests that the contemporaneous presence of high levels of LDH, Ferritin, and as expected, CRP, and D-dimer could be considered as potential predictors of COVID-19 severity and death.

6.
Cells ; 10(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34831238

RESUMO

Increasing evidence points to the Survival Motor Neuron (SMN) protein as a key determinant of translation pathway. Besides its role in RNA processing and sorting, several works support a critical implication of SMN in ribosome biogenesis. We previously showed that SMN binds ribosomal proteins (RPs) as well as their encoding transcripts, ensuring an appropriate level of locally synthesized RPs. SMN impacts the translation machinery in both neural and non-neural cells, in agreement with the concept that SMN is an essential protein in all cell types. Here, we further assessed the relationship between SMN and translation-related factors in immortalized human fibroblasts. We focused on SMN-nucleolin interaction, keeping in mind that nucleolin is an RNA-binding protein, highly abundant within the nucleolus, that exhibits a central role in ribosomes production. Nucleolin may also affects translation network by binding the mammalian target of rapamycin (mTOR) mRNA and promoting its local synthesis. In this regard, for the first time we provided evidence that SMN protein itself associates with mTOR transcript. Collectively, we found that: (1) SMN coexists with nucleolin-mTOR mRNA complexes at subcellular level; (2) SMN deficiency impairs nucleolar compartmentalization of nucleolin, and (3) this event correlates with the nuclear retention of mTOR mRNA. These findings suggest that SMN may regulate not only structural components of translation machinery, but also their upstream regulating factors.


Assuntos
Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Complexo SMN/metabolismo , Serina-Treonina Quinases TOR/genética , Linhagem Celular , Nucléolo Celular/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas do Complexo SMN/deficiência , Frações Subcelulares/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Nucleolina
7.
Front Immunol ; 12: 730128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552593

RESUMO

Several types of cancer grow differently depending on the environmental stimuli they receive. In glioma, exposure to an enriched environment (EE) increases the overall survival rate of tumor-bearing mice, acting on the cells that participate to define the tumor microenvironment. In particular, environmental cues increase the microglial production of interleukin (IL)-15 which promotes a pro-inflammatory (antitumor) phenotype of microglia and the cytotoxic activity of natural killer (NK) cells, counteracting glioma growth, thus representing a virtuous mechanism of interaction between NK cells and microglia. To mimic the effect of EE on glioma, we investigated the potential of creating engineered microglia as the source of IL-15 in glioma. We demonstrated that microglia modified with recombinant adeno-associated virus serotype 2 (rAAV2) carrying IL-15 (rAAV2-IL-15), to force the production of IL-15, are able to increase the NK cells viability in coculture. Furthermore, the intranasal delivery of rAAV2-IL-15 microglia triggered the interplay with NK cells in vivo, enhancing NK cell recruitment and pro-inflammatory microglial phenotype in tumor mass of glioma-bearing mice, and ultimately counteracted tumor growth. This approach has a high potential for clinical translatability, highlighting the therapeutic efficacy of forced IL-15 production in microglia: the delivery of engineered rAAV2-IL-15 microglia to boost the immune response paves the way to design a new perspective therapy for glioma patients.


Assuntos
Neoplasias Encefálicas/terapia , Dependovirus/metabolismo , Terapia Genética , Glioma/terapia , Imunoterapia , Interleucina-15/metabolismo , Microglia/transplante , Microambiente Tumoral , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Citotoxicidade Imunológica , Dependovirus/genética , Dependovirus/imunologia , Engenharia Genética , Glioma/genética , Glioma/imunologia , Glioma/metabolismo , Interleucina-15/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/imunologia , Microglia/metabolismo , Fenótipo , Transdução Genética , Carga Tumoral
8.
Exp Cell Res ; 399(2): 112471, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33417922

RESUMO

CCHCR1 (Coiled-Coil alpha-Helical Rod 1), maps to chromosomal region 6p21.3, within the major psoriasis susceptibility locus PSORS1. CCHCR1 itself is a plausible psoriasis candidate gene, however its role in psoriasis pathogenesis remains unclear. We previously demonstrated that CCHCR1 protein acts as a cytoplasmic docking site for RNA polymerase II core subunit 3 (RPB3) in cycling cells, suggesting a role for CCHCR1 in vesicular trafficking between cellular compartments. Here, we report a novel interaction between CCHCR1 and the RNA binding protein HAX1. HAX1 maps to chromosomal region 1q21.3 within the PSORS4 locus and is over-expressed in psoriasis. Both CCHCR1 and HAX1 share subcellular co-localization with mitochondria, nuclei and cytoplasmic vesicles as P-bodies. By a series of ribonucleoprotein immunoprecipitation (RIP) assays, we isolated a pool of mRNAs complexed with HAX1 and/or CCHCR1 proteins. Among the mRNAs complexed with both CCHCR1 and HAX1 proteins, there are Vimentin mRNA, previously described to be bound by HAX1, and CAMP/LL37 mRNA, whose gene product is over-expressed in psoriasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Redes Reguladoras de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mapas de Interação de Proteínas , Psoríase/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Redes Reguladoras de Genes/genética , Loci Gênicos , Predisposição Genética para Doença/genética , Células HL-60 , Células HeLa , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Mapas de Interação de Proteínas/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos
9.
Blood Adv ; 4(22): 5616-5630, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33186461

RESUMO

Multiple myeloma (MM) is a hematologic malignancy produced by a clonal expansion of plasma cells and characterized by abnormal production and secretion of monoclonal antibodies. This pathology exhibits an enormous heterogeneity resulting not only from genetic alterations but also from several epigenetic dysregulations. Here we provide evidence that Che-1/AATF (Che-1), an interactor of RNA polymerase II, promotes MM proliferation by affecting chromatin structure and sustaining global gene expression. We found that Che-1 depletion leads to a reduction of "active chromatin" by inducing a global decrease of histone acetylation. In this context, Che-1 directly interacts with histones and displaces histone deacetylase class I members from them. Strikingly, transgenic mice expressing human Che-1 in plasma cells develop MM with clinical features resembling those observed in the human disease. Finally, Che-1 downregulation decreases BRD4 chromatin accumulation to further sensitize MM cells to bromodomain and external domain inhibitors. These findings identify Che-1 as a promising target for MM therapy, alone or in combination with bromodomain and external domain inhibitors.


Assuntos
Mieloma Múltiplo , Proteínas Nucleares , Proliferação de Células , Cromatina , Humanos , Mieloma Múltiplo/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
10.
Sci Rep ; 10(1): 19000, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149163

RESUMO

Alterations of RNA homeostasis can lead to severe pathological conditions. The Survival of Motor Neuron (SMN) protein, which is reduced in Spinal Muscular Atrophy, impacts critical aspects of the RNA life cycle, such as splicing, trafficking, and translation. Increasing evidence points to a potential role of SMN in ribosome biogenesis. Our previous study revealed that SMN promotes membrane-bound ribosomal proteins (RPs), sustaining activity-dependent local translation. Here, we suggest that plasma membrane domains could be a docking site not only for RPs but also for their encoding transcripts. We have shown that SMN knockdown perturbs subcellular localization as well as translation efficiency of RPS6 mRNA. We have also shown that plasma membrane-enriched fractions from human fibroblasts retain RPS6 transcripts in an SMN-dependent manner. Furthermore, we revealed that SMN traffics with RPS6 mRNA promoting its association with caveolin-1, a key component of membrane dynamics. Overall, these findings further support the SMN-mediated crosstalk between plasma membrane dynamics and translation machinery. Importantly, our study points to a potential role of SMN in the ribosome assembly pathway by selective RPs synthesis/localization in both space and time.


Assuntos
Compartimento Celular , RNA Mensageiro/metabolismo , Proteína S6 Ribossômica/genética , Proteína 1 de Sobrevivência do Neurônio Motor/fisiologia , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Humanos , Biossíntese de Proteínas , Transporte Proteico , Ribossomos/metabolismo
11.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1172-1182, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29408646

RESUMO

Up-regulation of the dystrophin-related gene utrophin represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy (DMD). In order to re-program the utrophin expression level in muscle, we engineered artificial zinc finger transcription factors (ZF-ATFs) that target the utrophin 'A' promoter. We have previously shown that the ZF-ATF "Jazz", either by transgenic manipulation or by systemic adeno-associated viral delivery, induces significant rescue of muscle function in dystrophic "mdx" mice. We present the full characterization of an upgraded version of Jazz gene named "JZif1" designed to minimize any possible host immune response. JZif1 was engineered on the Zif268 gene-backbone using selective amino acid substitutions to address JZif1 to the utrophin 'A' promoter. Here, we show that JZif1 induces remarkable amelioration of the pathological phenotype in mdx mice. To investigate the molecular mechanisms underlying Jazz and JZif1 induced muscle functional rescue, we focused on utrophin related pathways. Coherently with utrophin subcellular localization and role in neuromuscular junction (NMJ) plasticity, we found that our ZF-ATFs positively impact the NMJ. We report on ZF-ATF effects on post-synaptic membranes in myogenic cell line, as well as in wild type and mdx mice. These results candidate our ZF-ATFs as novel therapeutic molecules for DMD treatment.


Assuntos
Terapia Genética/métodos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/terapia , Junção Neuromuscular/metabolismo , Engenharia de Proteínas , Fatores de Transcrição , Regulação para Cima , Animais , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Junção Neuromuscular/genética , Junção Neuromuscular/patologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Utrofina/genética , Dedos de Zinco
12.
EMBO Rep ; 19(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29367285

RESUMO

Despite progress in treating B-cell precursor acute lymphoblastic leukemia (BCP-ALL), disease recurrence remains the main cause of treatment failure. New strategies to improve therapeutic outcomes are needed, particularly in high-risk relapsed patients. Che-1/AATF (Che-1) is an RNA polymerase II-binding protein involved in proliferation and tumor survival, but its role in hematological malignancies has not been clarified. Here, we show that Che-1 is overexpressed in pediatric BCP-ALL during disease onset and at relapse, and that its depletion inhibits the proliferation of BCP-ALL cells. Furthermore, we report that c-Myc regulates Che-1 expression by direct binding to its promoter and describe a strict correlation between Che-1 expression and c-Myc expression. RNA-seq analyses upon Che-1 or c-Myc depletion reveal a strong overlap of the respective controlled pathways. Genomewide ChIP-seq experiments suggest that Che-1 acts as a downstream effector of c-Myc. These results identify the pivotal role of Che-1 in the control of BCP-ALL proliferation and present the protein as a possible therapeutic target in children with relapsed BCP-ALL.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Regulação Leucêmica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Regiões Promotoras Genéticas/genética
13.
J Exp Clin Cancer Res ; 35(1): 146, 2016 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-27639846

RESUMO

BACKGROUND: We have previously shown that the eukaryotic elongation factor subunit 1B gamma (eEF1Bγ) interacts with the RNA polymerase II (pol II) alpha-like subunit "C" (POLR2C), alone or complexed, in the pol II enzyme. Moreover, we demonstrated that eEF1Bγ binds the promoter region and the 3' UTR mRNA of the vimentin gene. These events contribute to localize the vimentin transcript and consequentially its translation, promoting a proper mitochondrial network. METHODS: With the intent of identifying additional transcripts that complex with the eEF1Bγ protein, we performed a series of ribonucleoprotein immunoprecipitation (RIP) assays using a mitochondria-enriched heavy membrane (HM) fraction. RESULTS: Among the eEF1Bγ complexed transcripts, we found the mRNA encoding the Che-1/AATF multifunctional protein. As reported by other research groups, we found the tumor suppressor p53 transcript complexed with the eEF1Bγ protein. Here, we show for the first time that eEF1Bγ binds not only Che-1 and p53 transcripts but also their promoters. Remarkably, we demonstrate that both the Che-1 transcript and its translated product localize also to the mitochondria and that eEF1Bγ depletion strongly perturbs the mitochondrial network and the correct localization of Che-1. In a doxorubicin (Dox)-induced DNA damage assay we show that eEF1Bγ depletion significantly decreases p53 protein accumulation and slightly impacts on Che-1 accumulation. Importantly, Che-1 and p53 proteins are components of the DNA damage response machinery that maintains genome integrity and prevents tumorigenesis. CONCLUSIONS: Our data support the notion that eEF1Bγ, besides its canonical role in translation, is an RNA-binding protein and a key player in cellular stress responses. We suggest for eEF1Bγ a role as primordial transcription/translation factor that links fundamental steps from transcription control to local translation.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Neoplasias/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Células HCT116 , Células HeLa , Humanos , Mitocôndrias/genética , Neoplasias/genética , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo
14.
J Cell Sci ; 129(4): 804-16, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26743087

RESUMO

Disconnection between membrane signalling and actin networks can have catastrophic effects depending on cell size and polarity. The survival motor neuron (SMN) protein is ubiquitously involved in assembly of spliceosomal small nuclear ribonucleoprotein particles. Other SMN functions could, however, affect cellular activities driving asymmetrical cell surface expansions. Genes able to mitigate SMN deficiency operate within pathways in which SMN can act, such as mRNA translation, actin network and endocytosis. Here, we found that SMN accumulates at membrane protrusions during the dynamic rearrangement of the actin filaments. In addition to localization data, we show that SMN interacts with caveolin-1, which mediates anchoring of translation machinery components. Importantly, SMN deficiency depletes the plasma membrane of ribosomes, and this correlates with the failure of fibroblasts to extend membrane protrusions. These findings strongly support a relationship between SMN and membrane dynamics. We propose that SMN could assembly translational platforms associated with and governed by the plasma membrane. This activity could be crucial in cells that have an exacerbated interdependence of membrane remodelling and local protein synthesis.


Assuntos
Membrana Celular/metabolismo , Proteínas do Complexo SMN/fisiologia , Citoesqueleto de Actina/metabolismo , Caveolina 1/metabolismo , Membrana Celular/ultraestrutura , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Células Cultivadas , Humanos , Biossíntese de Proteínas , Transporte Proteico , Ribossomos/metabolismo
15.
J Cell Physiol ; 231(1): 224-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26097015

RESUMO

Numerous therapeutic approaches for Duchenne and Becker Muscular Dystrophy (DMD and BMD), the most common X-linked muscle degenerative disease, have been proposed. So far, the only one showing a clear beneficial effect is the use of corticosteroids. Recent evidence indicates an improvement of dystrophic cardiac and skeletal muscles in the presence of sustained cGMP levels secondary to a blocking of their degradation by phosphodiesterase five (PDE5). Due to these data, we performed a study to investigate the effect of the specific PDE5 inhibitor, tadalafil, on dystrophic skeletal muscle function. Chronic pharmacological treatment with tadalafil has been carried out in mdx mice. Behavioral and physiological tests, as well as histological and biochemical analyses, confirmed the efficacy of the therapy. We then performed a microarray-based genomic analysis to assess the pattern of gene expression in muscle samples obtained from the different cohorts of animals treated with tadalafil. This scrutiny allowed us to identify several classes of modulated genes. Our results show that PDE5 inhibition can ameliorate dystrophy by acting at different levels. Tadalafil can lead to (1) increased lipid metabolism; (2) a switch towards slow oxidative fibers driven by the up-regulation of PGC-1α; (3) an increased protein synthesis efficiency; (4) a better actin network organization at Z-disk.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Inibidores da Fosfodiesterase 5/farmacologia , Tadalafila/farmacologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
EMBO J ; 34(9): 1214-30, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25770584

RESUMO

Mammalian target of rapamycin (mTOR) is a key protein kinase that regulates cell growth, metabolism, and autophagy to maintain cellular homeostasis. Its activity is inhibited by adverse conditions, including nutrient limitation, hypoxia, and DNA damage. In this study, we demonstrate that Che-1, a RNA polymerase II-binding protein activated by the DNA damage response, inhibits mTOR activity in response to stress conditions. We found that, under stress, Che-1 induces the expression of two important mTOR inhibitors, Redd1 and Deptor, and that this activity is required for sustaining stress-induced autophagy. Strikingly, Che-1 expression correlates with the progression of multiple myeloma and is required for cell growth and survival, a malignancy characterized by high autophagy response.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Mieloma Múltiplo/patologia , Proteínas Repressoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Nus , Mieloma Múltiplo/metabolismo , Complexos Multiproteicos/metabolismo , Fosforilação , Proteínas Repressoras/genética , Estresse Fisiológico , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Biochim Biophys Acta ; 1839(9): 813-25, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24984200

RESUMO

Aberrant upregulation of NOTCH3 gene plays a critical role in cancer pathogenesis. However, the underlying mechanisms are still unknown. We tested here the hypothesis that aberrant epigenetic modifications in the NOTCH3 promoter region might account for its upregulation in cancer cells. We compared DNA and histone methylation status of NOTCH3 promoter region in human normal blood cells and T cell acute lymphoblastic leukemia (T-ALL) cell lines, differentially expressing NOTCH3. We found that histone methylation, rather than DNA hypomethylation, contributes towards establishing an active chromatin status of NOTCH3 promoter in NOTCH3 overexpressing cancer cells. We discovered that the chromatin regulator protein BORIS/CTCFL plays an important role in regulating NOTCH3 gene expression. We observed that BORIS is present in T-ALL cell lines as well as in cell lines derived from several solid tumors overexpressing NOTCH3. Moreover, BORIS targets NOTCH3 promoter in cancer cells and it is able to induce and to maintain a permissive/active chromatin conformation. Importantly, the association between NOTCH3 overexpression and BORIS presence was confirmed in primary T-ALL samples from patients at the onset of the disease. Overall, our results provide novel insights into the determinants of NOTCH3 overexpression in cancer cells, by revealing a key role for BORIS as the main mediator of transcriptional deregulation of NOTCH3.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Receptores Notch/genética , Células Cultivadas , Metilação de DNA , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Regiões Promotoras Genéticas , Receptor Notch3
18.
J Cell Physiol ; 229(9): 1283-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24469912

RESUMO

Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/terapia , Proteínas Recombinantes de Fusão/biossíntese , Fatores de Transcrição/biossíntese , Utrofina/metabolismo , Dedos de Zinco , Actinas/genética , Animais , Modelos Animais de Doenças , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Contração Muscular , Força Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Necrose , Fenótipo , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Recuperação de Função Fisiológica , Fatores de Tempo , Fatores de Transcrição/genética , Regulação para Cima , Utrofina/genética , Dedos de Zinco/genética
19.
J Biol Chem ; 288(32): 23348-57, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798705

RESUMO

To combat threats posed by DNA damage, cells have evolved mechanisms, collectively termed DNA damage response (DDR). These mechanisms detect DNA lesions, signal their presence, and promote their repair. Centrosomes integrate G2/M checkpoint control and repair signals in response to genotoxic stress, acting as an efficient control mechanism when G2/M checkpoint function fails and mitosis begins in the presence of damaged DNA. Che-1 is an RNA polymerase II-binding protein involved in the regulation of gene transcription, induction of cell proliferation, and DDR. Here we provide evidence that in addition to its nuclear localization, Che-1 localizes at interphase centrosomes, where it accumulates following DNA damage or spindle poisons. We show that Che-1 depletion generates supernumerary centrosomes, multinucleated cells, and multipolar spindle formation. Notably, Che-1 depletion abolishes the ability of Chk1 to bind pericentrin and to localize at centrosomes, which, in its turn, deregulates the activation of centrosomal cyclin B-Cdk1 and advances entry into mitosis. Our results reinforce the notion that Che-1 plays an important role in DDR and that its contribution seems to be relevant for the spindle assembly checkpoint.


Assuntos
Antígenos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Centrossomo/metabolismo , Cromossomos Humanos/metabolismo , Dano ao DNA , Mitose/fisiologia , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Antígenos/genética , Proteínas Reguladoras de Apoptose/genética , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Cromossomos Humanos/genética , Ciclina B/genética , Ciclina B/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Quinases/genética , Proteínas Repressoras/genética
20.
J Neurosci ; 33(17): 7603-14, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616565

RESUMO

Memory consolidation requires gene expression regulation by transcription factors, which eventually may induce chromatin modifications as histone acetylation. This mechanism is regulated by histone acetylases and deacetylases. It is not yet clear whether memory consolidation always recruits histone acetylation or it is only engaged in more persistent memories. To address this question, we used different strength of training for novel object recognition task in mice. Only strong training induced a long-lasting memory and an increase in hippocampal histone H3 acetylation. Histone acetylase inhibition in the hippocampus during consolidation impaired memory persistence, whereas histone deacetylase inhibition caused weak memory to persist. Nuclear factor κB (NF-κB) transcription factor inhibition impaired memory persistence and, concomitantly, reduced the general level of H3 acetylation. Accordingly, we found an important increase in H3 acetylation at a specific NF-κB-regulated promoter region of the Camk2d gene, which was reversed by NF-kB inhibition. These results show for the first time that histone acetylation is a specific molecular signature of enduring memories.


Assuntos
Histonas/metabolismo , Memória/fisiologia , NF-kappa B/fisiologia , Reconhecimento Psicológico/fisiologia , Acetilação , Animais , Histona Acetiltransferases/metabolismo , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...