Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anesth Analg Crit Care ; 3(1): 37, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853430

RESUMO

BACKGROUND: Acute kidney injury (AKI) is among the most common complications following cardiac surgery in adult and pediatric patients, significantly affecting morbidity and mortality. Artificial Intelligence (AI) with Machine Learning (ML) can be used to predict outcomes. AKI diagnosis anticipation may be an ideal target of these methods. The scope of the study is building a Machine Learning (ML) train model with Random Forest (RF) algorithm, based on electronic health record (EHR) data, able to forecast AKI continuously after 48 h in post-cardiac surgery children, and to test its performance. Four hundred nineteen consecutive patients out of 1115 hospital admissions were enrolled in a single-center retrospective study. Patients were younger than 18 years and admitted from August 2018 to February 2020 in a pediatric cardiac intensive care unit (PCICU) undergoing cardiac surgery, invasive procedure (hemodynamic studies), and medical conditions with complete EHR records and discharged after 48 h or more. RESULTS: Thirty-six variables were selected to build the algorithm according to commonly described cardiac surgery-associated AKI clinical predictors. We evaluated different models for different outcomes: binary AKI (no AKI vs. AKI), severe AKI (no-mild vs severe AKI), and multiclass classification (maximum AKI and the most frequent level of AKI, mode AKI). The algorithm performance was assessed with the area under the curve receiver operating characteristics (AUC ROC) for binary classification, with accuracy and K for multiclass classification. AUC ROC for binary AKI was 0.93 (95% CI 0.92-0.94), and for severe AKI was 0.99 (95% CI 0.98-1). Mode AKI accuracy was 0.95, and K was 0.80 (95% CI 0.94-0.96); maximum AKI accuracy was 0.92, and K was 0.71 (95% CI 0.91-0.93). The importance matrix plot demonstrated creatinine, basal creatinine, platelets count, adrenaline support, and lactate dehydrogenase for binary AKI with the addition of cardiopulmonary bypass duration for severe AKI as the most relevant variables of the model. CONCLUSIONS: We validated a ML model to detect AKI occurring after 48 h in a retrospective observational study that could help clinicians in individuating patients at risk of AKI, in which a preventive strategy can be determinant to improve the occurrence of renal dysfunction.

2.
Antibiotics (Basel) ; 11(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35326768

RESUMO

Machine learning and cluster analysis applied to the clinical setting of an intensive care unit can be a valuable aid for clinical management, especially with the increasing complexity of clinical monitoring. Providing a method to measure clinical experience, a proxy for that automatic gestalt evaluation that an experienced clinician sometimes effortlessly, but often only after long, hard consideration and consultation with colleagues, relies upon for decision making, is what we wanted to achieve with the application of machine learning to antibiotic therapy and clinical monitoring in the present work. This is a single-center retrospective analysis proposing methods for evaluation of vitals and antimicrobial therapy in intensive care patients. For each patient included in the present study, duration of antibiotic therapy, consecutive days of treatment and type and combination of antimicrobial agents have been assessed and considered as single unique daily record for analysis. Each parameter, composing a record was normalized using a fuzzy logic approach and assigned to five descriptive categories (fuzzy domain sub-sets ranging from "very low" to "very high"). Clustering of these normalized therapy records was performed, and each patient/day was considered to be a pertaining cluster. The same methodology was used for hourly bed-side monitoring. Changes in patient conditions (monitoring) can lead to a shift of clusters. This can provide an additional tool for assessing progress of complex patients. We used Fuzzy logic normalization to descriptive categories of parameters as a form nearer to human language than raw numbers.

3.
Opt Express ; 18(26): 27197-204, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21196997

RESUMO

Hybrid large mode area Ytterbium-doped double-cladding photonic crystal fibers with anti-symmetric high refractive index inclusions provide efficient amplified spontaneous emission spectral filtering. Their performances have been analyzed by numerical simulations and experimental measurements. In particular, the fiber single-mode behaviour has been studied, by taking into account the fundamental and the first higher-order mode. Two approaches, the core down-doping and the reduction of the air-hole diameter in the inner cladding, have been successfully applied to reduce the higher-order mode content, regardless of the bending of the doped fiber, without significantly affecting its spectral filtering properties.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Itérbio/química , Desenho Assistido por Computador , Cristalização , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...