Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(14): 7093-7101, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38497989

RESUMO

Pyrazole derivatives are key in crystal engineering and liquid crystal fields and thrive in agriculture, pharmaceutical, or biomedicine industries. Such versatility relies in their supramolecular bond adaptability when forming hydrogen bonds or metal-pyrazole complexes. Interestingly, the precise structure of pyrazole-based macrocycles forming widespread porous structures is still unsolved. We bring insight into such fundamental question by studying the self-assembled structures of a bis-pyrazole derivative sublimed in ultra-high-vacuum conditions (without solvents) onto the three (111) noble metal surfaces. By means of high-resolution scanning tunneling microscopy that is validated by gas phase density functional theory calculations, we find a common hexagonal nanoporous network condensed by triple hydrogen bonds at the molecule-metal interface. Such assembly is disrupted and divergent after annealing: (i) on copper, the molecular integrity is compromised leading to structural chaos, (ii) on silver, an incommensurate new oblique structure requiring molecular deprotonation is found and, (iii) on gold, metal-organic complexes are promoted yielding irregular chain structures. Our findings confirm the critical role of these metals on the different pyrazole nanoporous structure formation, discarding their preference for metal incorporation into the connecting nodes whenever there is no solvent involved.

2.
ACS Biomater Sci Eng ; 8(11): 5027-5037, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36318285

RESUMO

The design of ultratough hydrogels has recently emerged as a topic of great interest in the scientific community due to their ability to mimic the features of biological tissues. An outstanding strategy for preparing these materials relies on reversible and dynamic cross-links within the hydrogel matrix. In this work, inspired by the composition of ascidians' tunic, stretchable supramolecular hydrogels combining poly(vinyl alcohol), green tea-derived gallic acid, and rigid tannic acid-coated cellulose nanocrystals (TA@CNC) were designed. The addition of TA@CNC nanofillers in concentrations up to 1.2 wt % significantly impacted the mechanical and viscoelastic properties of the hydrogels due to the promotion of hydrogen bonding with the polymer matrix and polyphenols π-π stacking interactions. These supramolecular associations endow the hydrogels with excellent stretchability and strength (>340%, 540 kPa), low thermoreversible gel-sol transition (60 °C), and remolding ability, while the natural polyphenols provided potential antibacterial properties. These versatile materials can be anticipated to open up new prospects for the rational design of polyphenol-based cellulosic hydrogels for different biomedical applications.


Assuntos
Nanocompostos , Urocordados , Animais , Celulose/farmacologia , Celulose/química , Nanogéis , Hidrogéis/farmacologia , Hidrogéis/química , Antibacterianos/farmacologia
3.
Environ Monit Assess ; 194(10): 718, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050604

RESUMO

Microplastics (MPs) are critical emerging pollutants around the world. There is a growing interest in the effects of MP ingestion, non-digestion, and toxicity on aquatic organisms. Amphibian tadpoles are the vertebrate group that has received the least attention regarding this issue. The aim of the present study was to determine the ingestion of polyethylene MPs by Scinax squalirostris tadpoles by atomic force microscopy (AFM) and to evaluate the activities of carboxylesterase (CbE, using 4-naphthyl butyrate-NB-, and 1-naphthyl acetate -NA- as substrates) and alkaline phosphatase (ALP) under MP exposure. Enzyme activities were analyzed spectrophotometrically at 2 and 10 days of exposure. Tadpoles were exposed to two different treatments during 10 days: a negative control (CO, dechlorinated water) and MP (60 mg L-1). AFM images of the digestive contents of tadpoles revealed the presence of MPs. After 10 days of MP exposure, CbE (NB) activity was significantly higher and CbE (NA) activity was significantly lower in MP treatments than in controls. ALP activity decreased in MP treatments after 2 and 10 days of exposure. The detection of MP particles in the intestinal contents and the effects on metabolic enzymes in a common frog species evidenced the potential health risk of MP to aquatic vertebrates. Thus, the differential response in enzymes and substrates demonstrate the need for considering the complex effects of contaminants and nutrients on ecosystems for ecotoxicological risk characterization.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Anuros , Carboxilesterase/farmacologia , Ecossistema , Monitoramento Ambiental , Larva , Monoéster Fosfórico Hidrolases/farmacologia , Plásticos , Poluentes Químicos da Água/toxicidade
4.
Phys Chem Chem Phys ; 23(35): 19579-19589, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524287

RESUMO

Using first-principles calculations based on density functional theory (DFT), we study the aluminum fluoride (AlF3) intercalation in graphite as a new possibility to use this molecule in rechargeable batteries, and understand its role when used as a component of the solvent. We discuss the most stable configuration of the AlF3 molecule in graphite for stage-2 and stage-1 and the diffusion study of the molecule, the migration pathways and the energy barriers. Our results show an average voltage of 3.18 V for stage-2 and 3.44 V for stage-1, which is excellent for anion intercalated batteries. Furthermore, low diffusion energy barriers of the AlF3 intercalant molecules were found (the lowest diffusion energy barrier was 0.17 eV with a diffusion constant in the order of 10-5 cm2 s-1), which could lead to fast (dis)charging of a battery based on AlF3. The present study provides important information to understand the intercalation mechanism of AlF3 graphite layer electrodes, thus encouraging more experimental studies of this system.

5.
J Phys Chem B ; 120(13): 3414-24, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26991880

RESUMO

Atomistic molecular dynamic simulations were performed to study the structure of isolated VBT-VBA (vinylbenzylthymine-vinylbenzyltriethylammonium chloride) copolymer chains in water at different monomeric species ratios (1:1 and 1:4). The geometric parameters of the structure that the copolymers form in equilibrium together with the basic interactions that stabilize them were determined. Atomic force microscopy (AFM) measurements of dried diluted concentrations of the two copolymers onto highly oriented pyrolytic graphite (HOPG) substrates were carried out to study their aggregation arrangement. The experiments show that both copolymers arrange in fiber-like structures. Comparing the diameters predicted by the simulation results and those obtained by AFM, it can be concluded that individual copolymers arrange in bunches of two chains, stabilized by contra-ions-copolymer interactions for the 1:1 copolymerization ratio at the ionic strength of our samples. In contrast, for the 1:4 system the individual copolymer chains do not aggregate in bunches. These results remark the relevance of the copolymerization ratio and ionic strength of the solvent in the mesoscopic structure of these materials.

6.
Inorg Chem ; 53(5): 2535-44, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24528370

RESUMO

We report single-crystal X-band EPR and magnetic measurements of the coordination polymer catena-(trans-(µ2-fumarato)tetraaquacobalt(II)), 1, and the Co(II)-doped Zn(II) analogue, 2, in different Zn:Co ratios. 1 presents two magnetically inequivalent high spin S = 3/2 Co(II) ions per unit cell, named A and B, in a distorted octahedral environment coordinated to four water oxygen atoms and trans coordinated to two carboxylic oxygen atoms from the fumarate anions, in which the Co(II) ions are linked by hydrogen bonds and fumarate molecules. Magnetic susceptibility and magnetization measurements of 1 indicate weak antiferromagnetic exchange interactions between the S = 3/2 spins of the Co(II) ions in the crystal lattice. Oriented single crystal EPR experiments of 1 and 2 were used to evaluate the molecular g-tensor and the different exchange coupling constants between the Co(II) ions, assuming an effective spin S'= 1/2. Unexpectedly, the eigenvectors of the molecular g-tensor were not lying along any preferential bond direction, indicating that, in high spin Co(II) ions in roughly octahedral geometry with approximately axial EPR signals, the presence of molecular pseudo axes in the metal site does not determine preferential directions for the molecular g-tensor. The EPR experiment and magnetic measurements, together with a theoretical analysis relating the coupling constants obtained from both techniques, allowed us to evaluate selectively the exchange coupling constant associated with hydrogen bonds that connect magnetically inequivalent Co(II) ions (|JAB(1/2)| = 0.055(2) cm(­1)) and the exchange coupling constant associated with a fumarate bridge connecting equivalent Co(II) ions (|JAA(1/2)| ≈ 0.25 (1) cm(­1)), in good agreement with the average J(3/2) value determined from magnetic measurements.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Espectroscopia de Ressonância de Spin Eletrônica , Fenômenos Magnéticos , Cristalografia por Raios X , Íons , Modelos Moleculares
7.
Microsc Microanal ; 20(1): 61-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24164921

RESUMO

Surface topography and work function maps were simultaneously obtained for carbon surfaces modified by a dendritic molecule: 3,5-Bis (3,5-dinitrobenzoylamino) benzoic acid. The dendrons were spontaneously assembled onto highly ordered pyrolytic graphite samples, exhibiting an increase in the surface potential. This fact is consistent with the incorporation of an electron-acceptor functional group that remains electroactive on the surface.


Assuntos
Benzoatos/química , Dendrímeros/química , Grafite/química , Microscopia de Força Atômica , Nanoestruturas/química , Propriedades de Superfície
8.
J Phys Chem A ; 116(50): 12314-20, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23186406

RESUMO

We report an EPR study at X- and Q-bands of polycrystalline and single crystal samples of the mixed copper(II) complex with L-glutamic acid (glu) and 1,10-phenantroline (phen), [Cu(glu)(phen)(H(2)O)](+) NO(3)(-)·2(H(2)O). The polycrystalline sample spectrum at Q-band showed well resolved g(∥ )and g(⊥) features and partially solved hyperfine structure at g(∥), typical for weakly exchange coupled systems. This is confirmed from the angular variation of the EPR spectra which shows for certain magnetic field orientations a partially solved hyperfine structure characteristic of weak exchange, whereas a single Lorentzian line corresponding to strong exchange is observed for others. Analysis and simulation of the single crystal EPR spectra were performed using the random frequency modulation model of Anderson. Numerical simulations of the angular variation of the EPR spectra showed that the narrowing of the hyperfine structure is due to an exchange-mediated mechanism in which transitions between any pair of lines are equally likely. The exchange interaction responsible for this process is mediated by hydrophobic interactions between two phen molecules and a mixed chemical path of the type CuA-O(ap)H···O-C-O(eq)-CuB, for which we evaluated an average isotropic exchange parameter |J| ≈ 25 × 10(-4) cm(-1).


Assuntos
Cobre/química , Ácido Glutâmico/química , Compostos Organometálicos/química , Fenantrolinas/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Modelos Moleculares , Conformação Molecular
9.
J Phys Chem A ; 114(50): 13069-75, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21117655

RESUMO

We report powder and single crystal EPR measurements of [Cu(tda)(phen)](2)·H(2)tda (tda = thiodiacetate, phen = phenanthroline) at 9.7 GHz. This compound consists of centrosymmetric copper(II) ion dimers, weakly ferromagnetically exchange-coupled (J = +3.2 cm(-1)), in which the dimeric units are linked by hydrophobic chemical paths involving the phen molecules. EPR revealed that the triplet spectra are collapsed by interdimeric exchange interactions mediated by that chemical path. Analysis and simulation of the single crystal EPR spectra were performed using Anderson's exchange narrowing model, together with statistical arguments. This approach allowed us to interpret the spectra modulated by the interdimeric interactions in situations of weak, intermediate, and strong exchange. We evaluated an interdimeric exchange constant J' = 0.0070(3) cm(-1), indicating that hydrophobic paths can transmit weak exchange interactions between centers at relatively long distances of the order of ∼10 Å.


Assuntos
Cobre/química , Dimerização , Magnetismo , Compostos Organometálicos/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Modelos Moleculares , Conformação Molecular
10.
J Inorg Biochem ; 103(10): 1342-6, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19628281

RESUMO

Electron transfer proteins and redox enzymes containing paramagnetic redox centers with different relaxation rates are widespread in nature. Despite both the long distances and chemical paths connecting these centers, they can present weak magnetic couplings produced by spin-spin interactions such as dipolar and isotropic exchange. We present here a theoretical model based on the Bloch-Wangsness-Redfield theory to analyze the dependence with temperature of EPR spectra of interacting pairs of spin 1/2 centers having different relaxation rates, as is the case of the molybdenum-containing enzyme aldehyde oxidoreductase from Desulfovibrio gigas. We analyze the changes of the EPR spectra of the slow relaxing center (Mo(V)) induced by the faster relaxing center (FeS center). At high temperatures, when the relaxation time T(1) of the fast relaxing center is very short, the magnetic coupling between centers is averaged to zero. Conversely, at low temperatures when T(1) is longer, no modulation of the coupling between metal centers can be detected.


Assuntos
Aldeído Redutase/química , Proteínas de Bactérias/química , Desulfovibrio gigas/enzimologia , Molibdênio/química , Espectroscopia de Ressonância de Spin Eletrônica
11.
J Biol Inorg Chem ; 9(2): 145-51, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14669076

RESUMO

We report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D. alaskensis FDH is a heterodimeric protein with a molecular weight of 126+/-2 kDa composed of two subunits, alpha=93+/-3 kDa and beta=32+/-2 kDa, which contains 6+/-1 Fe/molecule, 0.4+/-0.1 Mo/molecule, 0.3+/-0.1 W/molecule, and 1.3+/-0.1 guanine monophosphate nucleotides. The UV-vis absorption spectrum of D. alaskensis FDH is typical of an iron-sulfur protein with a broad band around 400 nm. Variable-temperature EPR studies performed on reduced samples of D. alaskensis FDH showed the presence of signals associated with the different paramagnetic centers of D. alaskensis FDH. Three rhombic signals having g-values and relaxation behavior characteristic of [4Fe-4S] clusters were observed in the 5-40 K temperature range. Two EPR signals with all the g-values less than two, which accounted for less than 0.1 spin/protein, typical of mononuclear Mo(V) and W(V), respectively, were observed. The signal associated with the W(V) ion has a larger deviation from the free electron g-value, as expected for tungsten in a d(1) configuration, albeit with an unusual relaxation behavior. The EPR parameters of the Mo(V) signal are within the range of values typically found for the slow-type signal observed in several Mo-containing proteins belonging to the xanthine oxidase family of enzymes. Mo(V) resonances are split at temperatures below 50 K by magnetic coupling with one of the Fe/S clusters. The analysis of the inter-center magnetic interaction allowed us to assign the EPR-distinguishable iron-sulfur clusters with those seen in the crystal structure of a homologous enzyme.


Assuntos
Desulfovibrio/enzimologia , Formiato Desidrogenases/metabolismo , Ferro/química , Molibdênio/metabolismo , Pterinas/química , Enxofre/química , Tungstênio/metabolismo , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Desulfovibrio/química , Desulfovibrio/crescimento & desenvolvimento , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica , Eletroforese em Gel de Poliacrilamida , Formiato Desidrogenases/química , Peso Molecular , Oxirredução , Espectrofotometria Ultravioleta , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...