Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(16): 8132-8142, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38568015

RESUMO

Tip-enhanced Raman spectroscopy (TERS) is an advanced technique to perform local chemical analysis of the surface of a sample through the improvement of the sensitivity and the spatial resolution of Raman spectroscopy by plasmonic enhancement of the electromagnetic signal in correspondence with the nanometer-sized tip of an atomic force microscope (AFM). In this work, TERS is demonstrated to represent an innovative and powerful approach for studying extracellular vesicles, in particular bovine milk-derived extracellular vesicles (mEVs), which are nanostructures with considerable potential in drug delivery and therapeutic applications. Raman spectroscopy has been used to analyze mEVs at the micrometric and sub-micrometric scales to obtain a detailed Raman spectrum in order to identify the 'signature' of mEVs in terms of their characteristic molecular vibrations and, therefore, their chemical compositions. With the ability to improve lateral resolution, TERS has been used to study individual mEVs, demonstrating the possibility of investigating a single mEV selected on the surface of the sample and, moreover, analyzing specific locations on the selected mEV with nanometer lateral resolution. TERS potentially allows one to reveal local differences in the composition of mEVs providing new insights into their structure. Also, thanks to the intrinsic properties of TERS to acquire the signal from only the first few nanometers of the surface, chemical investigation of the lipid membrane in correspondence with the various locations of the selected mEV could be performed by analyzing the peaks of the Raman shift in the relevant range of the spectrum (2800-3000 cm-1). Despite being limited to mEVs, this work demonstrates the potential of TERS in the analysis of extracellular vesicles.


Assuntos
Vesículas Extracelulares , Microscopia de Força Atômica , Leite , Análise Espectral Raman , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Animais , Bovinos , Leite/química
2.
Appl Spectrosc ; : 37028241246292, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629431

RESUMO

The semiconductor industry is undergoing a transformative phase, marked by the relentless drive for miniaturization and a constant demand for higher performance and energy efficiency. However, the reduction of metal-oxide-semiconductor field-effect transistor sizes for advanced technology nodes below 10 nm presents several challenges. In response, strained silicon technology has emerged as a key player, exploiting strain induction in the silicon crystal lattice to improve device performance. At the same time, there has been a growing need for characterization techniques that allow in-line monitoring of sample conditions during semiconductor manufacturing, as an alternative to traditional methods such as transmission electron microscopy or high-resolution X-ray diffraction, which have several limitations in terms of measurement time and sample destructiveness. This paper explores the application of advanced spectroscopic characterization techniques, in particular µ-Raman spectroscopy and tip-enhanced Raman spectroscopy (TERS), to meet the evolving needs of the semiconductor industry for quality control and failure analysis, increasingly requiring faster and non-destructive characterization techniques. µ-Raman provides insight into strain values and distributions of strained layers with different thicknesses and germanium concentrations, but its lateral resolution is constrained by the Abbe diffraction limit. TERS, on the other hand, emerges as a powerful non-destructive technique capable of overcoming diffraction limits by exploiting the combination of an atomic force microscope with a Raman spectrometer. This breakthrough makes it possible to estimate the chemical composition and induced strain in the lattice by evaluating the Raman peak position shifts in strained and unstrained silicon layers, providing crucial insights for nanoscale strain control. In particular, this paper focuses on the TERS characterization of Si0.7Ge0.3 epitaxial layers grown on a silicon-on-insulator device, demonstrating the effectiveness of this technique and the high lateral resolution that can be achieved.

3.
Med Phys ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38432192

RESUMO

BACKGROUND: The increasing use of complex and high dose-rate treatments in radiation therapy necessitates advanced detectors to provide accurate dosimetry. Rather than relying on pre-treatment quality assurance (QA) measurements alone, many countries are now mandating the use of in vivo dosimetry, whereby a dosimeter is placed on the surface of the patient during treatment. Ideally, in vivo detectors should be flexible to conform to a patient's irregular surfaces. PURPOSE: This study aims to characterize a novel hydrogenated amorphous silicon (a-Si:H) radiation detector for the dosimetry of therapeutic x-ray beams. The detectors are flexible as they are fabricated directly on a flexible polyimide (Kapton) substrate. METHODS: The potential of this technology for application as a real-time flexible detector is investigated through a combined dosimetric and flexibility study. Measurements of fundamental dosimetric quantities were obtained including output factor (OF), dose rate dependence (DPP), energy dependence, percentage depth dose (PDD), and angular dependence. The response of the a-Si:H detectors investigated in this study are benchmarked directly against commercially available ionization chambers and solid-state diodes currently employed for QA practices. RESULTS: The a-Si:H detectors exhibit remarkable dose linearities in the direct detection of kV and MV therapeutic x-rays, with calibrated sensitivities ranging from (0.580 ± 0.002) pC/cGy to (19.36 ± 0.10) pC/cGy as a function of detector thickness, area, and applied bias. Regarding dosimetry, the a-Si:H detectors accurately obtained OF measurements that parallel commercially available detector solutions. The PDD response closely matched the expected profile as predicted via Geant4 simulations, a PTW Farmer ionization chamber and a PTW ROOS chamber. The most significant variation in the PDD performance was 5.67%, observed at a depth of 3 mm for detectors operated unbiased. With an external bias, the discrepancy in PDD response from reference data was confined to ± 2.92% for all depths (surface to 250 mm) in water-equivalent plastic. Very little angular dependence is displayed between irradiations at angles of 0° and 180°, with the most significant variation being a 7.71% decrease in collected charge at a 110° relative angle of incidence. Energy dependence and dose per pulse dependence are also reported, with results in agreement with the literature. Most notably, the flexibility of a-Si:H detectors was quantified for sample bending up to a radius of curvature of 7.98 mm, where the recorded photosensitivity degraded by (-4.9 ± 0.6)% of the initial device response when flat. It is essential to mention that this small bending radius is unlikely during in vivo patient dosimetry. In a more realistic scenario, with a bending radius of 15-20 mm, the variation in detector response remained within ± 4%. After substantial bending, the detector's photosensitivity when returned to a flat condition was (99.1 ± 0.5)% of the original response. CONCLUSIONS: This work successfully characterizes a flexible detector based on thin-film a-Si:H deposited on a Kapton substrate for applications in therapeutic x-ray dosimetry. The detectors exhibit dosimetric performances that parallel commercially available dosimeters, while also demonstrating excellent flexibility results.

5.
Ann Surg Oncol ; 30(10): 6201-6214, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37606837

RESUMO

BACKGROUND: Breast-conserving surgery (BCS) still remains a blind surgery despite all available tumor localization methods. Intraoperative ultrasound (IOUS) allows real-time visualization during all resection phases. METHODS: This was a prospective observational cohort study conducted at the Veneto Institute of Oncology between January 2021 and June 2022. Patients with ductal carcinoma in situ, T1-2 invasive cancer, or post-neoadjuvant tumors, suitable for BCS, were recruited. All breast cancer lesion types were included, i.e. solid palpable, solid non-palpable, non-solid non-palpable, and post-neoadjuvant treatment residual lesions. Eligible participants were randomly assigned to either IOUS or traditional surgery (TS) in a 1:1 ratio. The main outcomes were surgical margin involvement, reoperation rate, closest margin width, main specimen and cavity shaving margin volumes, excess healthy tissue removal, and calculated resection ratio (CRR). RESULTS: Overall, 160 patients were enrolled: 80 patients were allocated to the TS group and 80 to the IOUS group. IOUS significantly reduced specimen volumes (16.8 cm3 [10.5-28.9] vs. 24.3 cm3 [15.0-41.3]; p = 0.015), with wider closest resection margin width (2.0 mm [1.0-4.0] vs. 1.0 mm [0.5-2.0] after TS; p < 0.001). Tumor volume to specimen volume ratio was significantly higher after IOUS (4.7% [2.5-9.1] vs. 2.9% [0.8-5.2]; p < 0.001). IOUS yielded significantly better CRR (84.5% [46-120.8] vs. 114% [81.8-193.2] after TS; p < 0.001), lower involved margin rate (2.5 vs. 15%; p = 0.009) and reduced re-excision rate (2.5 vs. 12.5%; p = 0.032). CONCLUSIONS: IOUS allows real-time resection margin visualization and continuous control during BCS. It showed clear superiority over TS in both oncological and surgical outcomes for all breast cancer lesion types. These results disfavor the paradigm of blind breast surgery.


Assuntos
Neoplasias da Mama , Procedimentos Cirúrgicos Ultrassônicos , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Margens de Excisão , Estudos Prospectivos , Ultrassonografia de Intervenção
6.
Phys Med Biol ; 68(13)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37267990

RESUMO

Objective. Microbeam radiation therapy (MRT) is an alternative emerging radiotherapy treatment modality which has demonstrated effective radioresistant tumour control while sparing surrounding healthy tissue in preclinical trials. This apparent selectivity is achieved through MRT combining ultra-high dose rates with micron-scale spatial fractionation of the delivered x-ray treatment field. Quality assurance dosimetry for MRT must therefore overcome a significant challenge, as detectors require both a high dynamic range and a high spatial resolution to perform accurately.Approach. In this work, a series of radiation hard a-Si:H diodes, with different thicknesses and carrier selective contact configurations, have been characterised for x-ray dosimetry and real-time beam monitoring applications in extremely high flux beamlines utilised for MRT at the Australian Synchrotron.Results. These devices displayed superior radiation hardness under constant high dose-rate irradiations on the order of 6000 Gy s-1, with a variation in response of 10% over a delivered dose range of approximately 600 kGy. Dose linearity of each detector to x-rays with a peak energy of 117 keV is reported, with sensitivities ranging from (2.74 ± 0.02) nC/Gy to (4.96 ± 0.02) nC/Gy. For detectors with 0.8µm thick active a-Si:H layer, their operation in an edge-on orientation allows for the reconstruction of micron-size beam profiles (microbeams). The microbeams, with a nominal full-width-half-max of 50µm and a peak-to-peak separation of 400µm, were reconstructed with extreme accuracy. The full-width-half-max was observed as 55 ± 1µm. Evaluation of the peak-to-valley dose ratio and dose-rate dependence of the devices, as well as an x-ray induced charge (XBIC) map of a single pixel is also reported.Significance. These devices based on novel a-Si:H technology possess a unique combination of accurate dosimetric performance and radiation resistance, making them an ideal candidate for x-ray dosimetry in high dose-rate environments such as FLASH and MRT.


Assuntos
Silício , Síncrotrons , Raios X , Austrália , Radiometria/métodos
7.
Polymers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38231986

RESUMO

In recent years, Electrospinning (ES) has been revealed to be a straightforward and innovative approach to manufacture functionalized nanofiber-based membranes with high filtering performance against fine Particulate Matter (PM) and proper bioactive properties. These qualities are useful for tackling current issues from bacterial contamination on Personal Protective Equipment (PPE) surfaces to the reusability of both disposable single-use face masks and respirator filters. Despite the fact that the conventional ES process can be upscaled to promote a high-rate nanofiber production, the number of research works on the design of hybrid materials embedded in electrospun membranes for face mask application is still low and has mainly been carried out at the laboratory scale. In this work, a multi-needle ES was employed in a continuous processing for the manufacturing of both pristine Poly (Vinylidene Fluoride-co-Hexafluoropropylene) (PVDF-HFP) nanofibers and functionalized membrane ones embedded with TiO2 Nanoparticles (NPs) (PVDF-HFP@TiO2). The nanofibers were collected on Polyethylene Terephthalate (PET) nonwoven spunbond fabric and characterized by using Scanning Electron Microscopy and Energy Dispersive X-ray (SEM-EDX), Raman spectroscopy, and Atomic Force Microscopy (AFM) analysis. The photocatalytic study performed on the electrospun membranes proved that the PVDF-HFP@TiO2 nanofibers provide a significant antibacterial activity for both Staphylococcus aureus (~94%) and Pseudomonas aeruginosa (~85%), after only 5 min of exposure to a UV-A light source. In addition, the PVDF-HFP@TiO2 nanofibers exhibit high filtration efficiency against submicron particles (~99%) and a low pressure drop (~3 mbar), in accordance with the standard required for Filtering Face Piece masks (FFPs). Therefore, these results aim to provide a real perspective on producing electrospun polymer-based nanotextiles with self-sterilizing properties for the implementation of advanced face masks on a large scale.

8.
Sensors (Basel) ; 22(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36433320

RESUMO

We present a study on the radiation tolerance and timing properties of 3D diamond detectors fabricated by laser engineering on synthetic Chemical Vapor Deposited (CVD) plates. We evaluated the radiation hardness of the sensors using Charge Collection Efficiency (CCE) measurements after neutron fluences up to 1016 n/cm2 (1 MeV equivalent.) The radiation tolerance is significantly higher when moving from standard planar architecture to 3D architecture and increases with the increasing density of the columnar electrodes. Also, the maximum applicable bias voltage before electric breakdown increases significantly after high fluence irradiation, possibly due to the passivation of defects. The experimental analysis allowed us to predict the performance of the devices at higher fluence levels, well in the range of 1016 n/cm2. We summarize the recent results on the time resolution measurements of our test sensors after optimization of the laser fabrication process and outline future activity in developing pixel tracking systems for high luminosity particle physics experiments.

9.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36234601

RESUMO

In this paper, by means of high-resolution photoemission, soft X-ray absorption and atomic force microscopy, we investigate, for the first time, the mechanisms of damaging, induced by neutron source, and recovering (after annealing) of p-i-n detector devices based on hydrogenated amorphous silicon (a-Si:H). This investigation will be performed by mean of high-resolution photoemission, soft X-Ray absorption and atomic force microscopy. Due to dangling bonds, the amorphous silicon is a highly defective material. However, by hydrogenation it is possible to reduce the density of the defect by several orders of magnitude, using hydrogenation and this will allow its usage in radiation detector devices. The investigation of the damage induced by exposure to high energy irradiation and its microscopic origin is fundamental since the amount of defects determine the electronic properties of the a-Si:H. The comparison of the spectroscopic results on bare and irradiated samples shows an increased degree of disorder and a strong reduction of the Si-H bonds after irradiation. After annealing we observe a partial recovering of the Si-H bonds, reducing the disorder in the Si (possibly due to the lowering of the radiation-induced dangling bonds). Moreover, effects in the uppermost coating are also observed by spectroscopies.

10.
Nanomaterials (Basel) ; 11(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809596

RESUMO

Vitamin B12 (VitB12) is a naturally occurring compound produced by microorganisms and an essential nutrient for humans. Several papers highlight the role of VitB12 deficiency in bone and heart health, depression, memory performance, fertility, embryo development, and cancer, while VitB12 treatment is crucial for survival in inborn errors of VitB12 metabolism. VitB12 is administrated through intramuscular injection, thus impacting the patients' lifestyle, although it is known that oral administration may meet the specific requirement even in the case of malabsorption. Furthermore, the high-dose injection of VitB12 does not ensure a constant dosage, while the oral route allows only 1.2% of the vitamin to be absorbed in human beings. Nanocarriers are promising nanotechnology that can enable therapies to be improved, reducing side effects. Today, nanocarrier strategies applied at VitB12 delivery are at the initial phase and aim to simplify administration, reduce costs, improve pharmacokinetics, and ameliorate the quality of patients' lives. The safety of nanotechnologies is still under investigation and few treatments involving nanocarriers have been approved, so far. Here, we highlight the role of VitB12 in human metabolism and diseases, and the issues linked to its molecule properties, and discuss how nanocarriers can improve the therapy and supplementation of the vitamin and reduce possible side effects and limits.

11.
Nanomaterials (Basel) ; 10(5)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384606

RESUMO

Synthetic amorphous silica (SAS), manufactured in pyrogenic or precipitated form, is a nanomaterial with a widespread use as food additive (E 551). Oral exposure to SAS results from its use in food and dietary supplements, pharmaceuticals and toothpaste. Recent evidence suggests that oral exposure to SAS may pose health risks and highlights the need to address the toxic potential of SAS as affected by the physicochemical characteristics of the different forms of SAS. For this aim, investigating SAS toxicokinetics is of crucial importance and an analytical strategy for such an undertaking is presented. The minimization of silicon background in tissues, control of contamination (including silicon release from equipment), high-throughput sample treatment, elimination of spectral interferences affecting inductively coupled plasma mass spectrometry (ICP-MS) silicon detection, and development of analytical quality control tools are the cornerstones of this strategy. A validated method combining sample digestion with silicon determination by reaction cell ICP-MS is presented. Silica particles are converted to soluble silicon by microwave dissolution with mixtures of HNO3, H2O2 and hydrofluoric acid (HF), whereas interference-free ICP-MS detection of total silicon is achieved by ion-molecule chemistry with limits of detection (LoDs) in the range 0.2-0.5 µg Si g-1 for most tissues. Deposition of particulate SiO2 in tissues is assessed by single particle ICP-MS.

12.
Molecules ; 24(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766549

RESUMO

Natural methylxanthines, caffeine, theophylline and theobromine, are widespread biologically active alkaloids in human nutrition, found mainly in beverages (coffee, tea, cocoa, energy drinks, etc.). Their detection is thus of extreme importance, and many studies are devoted to this topic. During the last decade, graphene oxide (GO) and reduced graphene oxide (RGO) gained popularity as constituents of sensors (chemical, electrochemical and biosensors) for methylxanthines. The main advantages of GO and RGO with respect to graphene are the easiness and cheapness of synthesis, the notable higher solubility in polar solvents (water, among others), and the higher reactivity towards these targets (mainly due to - interactions); one of the main disadvantages is the lower electrical conductivity, especially when using them in electrochemical sensors. Nonetheless, their use in sensors is becoming more and more common, with the obtainment of very good results in terms of selectivity and sensitivity (up to 5.4 × 10-10 mol L-1 and 1.8 × 10-9 mol L-1 for caffeine and theophylline, respectively). Moreover, the ability of GO to protect DNA and RNA from enzymatic digestion renders it one of the best candidates for biosensors based on these nucleic acids. This is an up-to-date review of the use of GO and RGO in sensors.


Assuntos
Grafite/química , Xantinas/análise , Xantinas/isolamento & purificação , Adsorção , Humanos , Xantinas/química
13.
Nanomaterials (Basel) ; 9(8)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426465

RESUMO

Silver nanoparticles (AgNPs) are widely used as antibacterial agents and anticancer drugs, but often their low stability limits their mass production and broad applications. The use of niosomes as a carrier to protect and envelop AgNPs gives a new perspective to solve these problems. In this study, AgNPs were functionalized with sodium 3-mercapto-1-propanesulfonate (3MPS) to induce hydrophilic behavior, improving loading in Tween 20 and Span 20 niosomes (NioTw20 and NioSp20, respectively). Entrapment efficiency was evaluated by UV analyses and is around 1-4%. Dimensions were investigated by means of dynamic light scattering (DLS) (<2RH> = 140 ± 4 nm and <2RH> = 251 ± 1 nm respectively for NioTw20 + AgNPs and NioSp20 + AgNPs) and were compared with those by atomic force microscopy (AFM) and small angle X ray scattering (SAXS) analyses. Stability was assessed in water up to 90 days, and both in bovine serum and human serum for up to 8 h. In order to characterize the local structure of niosomes, SAXS measurements have been performed on Tween 20 and Span 20 empty niosomes and loaded with AgNPs. The release profiles of hydrophilic probe calcein and lipophilic probe Nile Red were performed in HEPES buffer and in human serum. All these features contribute to conclude that the two systems, NioTw20 + AgNPs and NioSp20 + AgNPs, are suitable and promising in the field of biological applications.

14.
Pharmaceutics ; 11(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717144

RESUMO

Ibuprofen is one of the non-steroidal anti-inflammatory drugs (NSAIDs) widely used to treat pain conditions. NSAIDs encounter several obstacles to passing across biological membranes. To overcome these constraints, we decided to study the effects of a new pH-sensitive formulation of niosomes containing Polysorbate 20 derivatized by Glycine and loaded with ibuprofen (NioIbu) in several animal models of pain in mice. We performed two tests commonly used to study acute antinociceptive activity, namely the writhing test and the capsaicin test. Our results demonstrated that NioIbu, administered 2 h before testing, reduced nociception, whereas the free form of ibuprofen was ineffective. In a model of inflammatory pain, hyperalgesia induced by zymosan, NioIbu induced a long-lasting reduction in hyperalgesia in treated mice. In a model of neuropathic pain induced by sciatic nerve chronic constriction, NioIbu reduced both neuropathy-induced allodynia and hyperalgesia. The results obtained in our experiments suggest that pH-sensitive niosomes containing Polysorbate 20 derivatized by Glycine is an effective model for NSAIDs delivery, providing durable antinociceptive effects and reducing the incidence of side effects.

15.
Artigo em Inglês | MEDLINE | ID: mdl-29665287

RESUMO

Identification of nanoparticles and nanosystems into cells and biological matrices is a hot research topic in nanobiotechnologies. Because of their capability to map physical properties (mechanical, electric, magnetic, chemical, or optical), several scanning probe microscopy based techniques have been proposed for the subsurface detection of nanomaterials in biological systems. In particular, atomic force microscopy (AFM) can be used to reveal stiff nanoparticles in cells and other soft biomaterials by probing the sample mechanical properties through the acquisition of local indentation curves or through the combination of ultrasound-based methods, like contact resonance AFM (CR-AFM) or scanning near field ultrasound holography. Magnetic force microscopy can detect magnetic nanoparticles and other magnetic (bio)materials in nonmagnetic biological samples, while electric force microscopy, conductive AFM, and Kelvin probe force microscopy can reveal buried nanomaterials on the basis of the differences between their electric properties and those of the surrounding matrices. Finally, scanning near field optical microscopy and tip-enhanced Raman spectroscopy can visualize buried nanostructures on the basis of their optical and chemical properties. Despite at a still early stage, these methods are promising for detection of nanomaterials in biological systems as they could be truly noninvasive, would not require destructive and time-consuming specific sample preparation, could be performed in vitro, on alive samples and in water or physiological environment, and by continuously imaging the same sample could be used to dynamically monitor the diffusion paths and interaction mechanisms of nanomaterials into cells and biological systems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Assuntos
Microscopia de Varredura por Sonda/métodos , Nanopartículas/ultraestrutura , Animais , Materiais Biocompatíveis , Células/ultraestrutura , Humanos , Fenômenos Magnéticos , Microscopia de Força Atômica , Microscopia Eletroquímica de Varredura , Microscopia de Varredura por Sonda/instrumentação , Nanotecnologia , Análise Espectral Raman , Biologia de Sistemas
16.
Pharmaceutics ; 10(2)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565809

RESUMO

The aim of this in vitro study is to prepare and characterize drug free and pentamidine loaded chitosan glutamate coated niosomes for intranasal drug delivery to reach the brain through intranasal delivery. Mucoadhesive properties and stability testing in various environments were evaluated to examine the potential of these formulations to be effective drug delivery vehicles for intranasal delivery to the brain. Samples were prepared using thin film hydration method. Changes in size and ζ-potential of coated and uncoated niosomes with and without loading of pentamidine in various conditions were assessed by dynamic light scattering (DLS), while size and morphology were also studied by atomic force microscopy (AFM). Bilayer properties and mucoadhesive behavior were investigated by fluorescence studies and DLS analyses, respectively. Changes in vesicle size and ζ-potential values were shown after addition of chitosan glutamate to niosomes, and when in contact with mucin solution. In particular, interactions with mucin were observed in both drug free and pentamidine loaded niosomes regardless of the presence of the coating. The characteristics of the proposed systems, such as pentamidine entrapment and mucin interaction, show promising results to deliver pentamidine or other possible drugs to the brain via nasal administration.

17.
ACS Appl Mater Interfaces ; 10(6): 5967-5977, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29338177

RESUMO

Titanium (Ti) is the most widely used metal in biomedical applications because of its biocompatibility; however, the significant difference in the mechanical properties between Ti and the surrounding tissues results in stress shielding which is detrimental for load-bearing tissues. In the current study, to attenuate the stress shielding effect, a new processing route was developed. It aimed at growing thick poly(methyl methacrylate) (PMMA) layers grafted on Ti substrates to incorporate a polymer component on Ti implants. However, the currently available methods do not allow the development of thick polymeric layers, reducing significantly their potential uses. The proposed route consists of an alkali activation of Ti substrates followed by a surface-initiated atom transfer radical polymerization using a phosphonic acid derivative as a coupling agent and a polymerization initiator and malononitrile as a polymerization activator. The average thickness of the grown PMMA layers is approximately 1.9 µm. The Ti activation-performed in a NaOH solution-leads to a porous sodium titanate interlayer with a hierarchical structure and an open microporosity. It promotes the covalent grafting reaction because of high hydroxyl groups' content and enables establishing a further mechanical interlocking between the growing PMMA layer and the Ti substrate. As a result, the produced graduated structure possesses high Ti/PMMA adhesion strength (∼260 MPa). Moreover, the PMMA layer is (i) thicker compared to those obtained with the previously reported techniques (∼1.9 µm), (ii) stable in a simulated body fluid solution, and (iii) biocompatible. This strategy opens new opportunities toward hybrid prosthesis with adjustable mechanical properties with respect to host bone properties for personalized medicines.

18.
Nanoscale ; 9(45): 18000-18011, 2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29131224

RESUMO

The development of high spatial resolution and element sensitive magnetic characterization techniques to quantitatively measure magnetic parameters of individual nanoparticles (NPs) and deeply understand and tune their magnetic properties is a hot topic in nanomagnetism. Magnetic force microscopy (MFM), thanks to its high lateral resolution, appears as a promising technique for the magnetic characterization of single nano-sized materials although it is still limited by some drawbacks, especially by the presence of electrostatic artifacts. Recently, these limitations have been overcome by the development of a particular MFM based technique called controlled magnetization - MFM (CM-MFM) allowing, in principle, a quantifiable correlation between the measured magnetic signal and the magnetization of the object under investigation. Here we propose an experimental procedure, based on the use of CM-MFM technique, to measure the magnetization curve of single magnetic NPs individuating their saturation magnetization, magnetic field, and coercivity. We measured, for the first time, the magnetization curves of individual Fe3O4 nanoparticles with diameters in the range of 18-32 nm by using a MFM instrument. Results are in very good agreement with the quantitative data obtained by SQUID analysis on a macroscopic sample, showing the high potential of the technique in the field of nanomagnetometry.

19.
Nanoscale ; 9(17): 5671-5676, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28422233

RESUMO

Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe3O4) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.


Assuntos
Microglia/ultraestrutura , Microscopia de Força Atômica , Nanopartículas , Animais , Estruturas Celulares , Embrião de Mamíferos , Camundongos , Vibração
20.
Adv Food Nutr Res ; 82: 149-204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28427532

RESUMO

Nanotechnology has paved the way to innovative food packaging materials and analytical methods to provide the consumers with healthier food and to reduce the ecological footprint of the whole food chain. Combining antimicrobial and antifouling properties, thermal and mechanical protection, oxygen and moisture barrier, as well as to verify the actual quality of food, e.g., sensors to detect spoilage, bacterial growth, and to monitor incorrect storage conditions, or anticounterfeiting devices in food packages may extend the products shelf life and ensure higher quality of foods. Also the ecological footprint of food chain can be reduced by developing new completely recyclable and/or biodegradable packages from natural and eco-friendly resources. The contribution of nanotechnologies to these goals is reviewed in this chapter, together with a description of portable devices ("lab-on-chip," sensors, nanobalances, etc.) which can be used to assess the quality of food and an overview of regulations in force on food contact materials.


Assuntos
Embalagem de Alimentos/instrumentação , Alimentos/normas , Nanotecnologia , Técnicas Biossensoriais , Inocuidade dos Alimentos , Humanos , Legislação sobre Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...