RESUMO
A number of genomic variants related to native American ancestry may be associated with an increased risk of developing Acute Lymphoblastic Leukemia (ALL), which means that Latin American and hispanic populations from the New World may be relatively susceptible to this disease. However, there has not yet been any comprehensive investigation of the variants associated with susceptibility to ALL in traditional Amerindian populations from Brazilian Amazonia. We investigated the exomes of the 18 principal genes associated with susceptibility to ALL in samples of 64 Amerindians from this region, including cancer-free individuals and patients with ALL. We compared the findings with the data on populations representing five continents available in the 1000 Genomes database. The variation in the allele frequencies found between the different groups was evaluated using Fisher's exact test. The analyses of the exomes of the Brazilian Amerindians identified 125 variants, seven of which were new. The comparison of the allele frequencies between the two Amerindian groups analyzed in the present study (ALL patients vs. cancer-free individuals) identified six variants (rs11515, rs2765997, rs1053454, rs8068981, rs3764342, and rs2304465) that may be associated with susceptibility to ALL. These findings contribute to the identification of genetic variants that represent a potential risk for ALL in Amazonian Amerindian populations and might favor precision oncology measures.
RESUMO
In Brazil, Acute lymphoid leukemia (ALL) is the leading cause of cancer deaths in children and adolescents. Treatment toxicity is one of the reasons for stopping chemotherapy. Amerindian genomic ancestry is an important factor for this event due to fluctuations in frequencies of genetic variants, as in the NUDT15 and SLC22A1 genes, which make up the pharmacokinetic and pharmacodynamic pathways of chemotherapy. This study aimed to investigate possible associations between NUDT15 (rs1272632214) and SLC22A1 (rs202220802) gene polymorphism and genomic ancestry as a risk of treatment toxicities in patients with childhood ALL in the Amazon region of Brazil. The studied population consisted of 51 patients with a recent diagnosis of ALL when experiencing induction therapy relative to the BFM 2009 protocol. Our results evidenced a significant association of risk of severe infectious toxicity for the variant of the SLC22A1 gene (OR: 3.18, p = 0.031). Genetic ancestry analyses demonstrated that patients who had a high contribution of African ancestry had a significant protective effect for the development of toxicity (OR: 0.174; p = 0.010), possibly due to risk effects of the Amerindian contribution. Our results indicate that mixed populations with a high degree of African ancestry have a lower risk of developing general toxicity during induction therapy for ALL. In addition, individuals with the SLC22A1 variant have a higher risk of developing severe infectious toxicity while undergoing the same therapy.
Assuntos
Transportador 1 de Cátions Orgânicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , População Negra , Criança , Humanos , Transportador 1 de Cátions Orgânicos/genética , Polimorfismo Genético , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pirofosfatases/genéticaRESUMO
Autism spectrum disorder is a neurodevelopmental disorder, affecting one in 160 children worldwide. The causes of autism are still poorly understood, but research shows the relevance of genetic factors in its pathophysiology, including the CHD8, SCN2A, FOXP1 and SYNGAP1 genes. Information about the genetic influence on various diseases, including autism, in the Amerindian population from Amazon, is still scarce. We investigated 35 variants of the CHD8, SCN2A, FOXP1, and SYNGAP1 gene in Amazonian Amerindians in comparison with publicly available population frequencies from the 1000 Genomes Project database. Our study identified 16 variants in the Amerindian population of the Amazon with frequencies significantly different from the other populations. Among them, the SCN2A (rs17183814, rs75109281, and rs150453735), FOXP1 (rs56850311 and rs939845), and SYNGAP1 (rs9394145 and rs115441992) variants presented higher frequency than all other populations analyzed. In addition, nine variants were found with lower frequency among the Amerindians: CHD8 (rs35057134 and rs10467770), SCN2A (rs3769951, rs2304014, rs1838846, and rs7593568), FOXP1 (rs112773801 and rs56850311), and SYNGAP1 (rs453590). These data show the unique genetic profile of the indigenous population of the Brazilian Amazon. Knowledge of these variants can help to understand the pathophysiology and diagnosis of autism among Amerindians, Brazilians, and in admixed populations that have contributions from this ethnic group.