Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 10(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987759

RESUMO

Management of wastewater is a major challenge nowadays, due to increasing water demand, growing population and more stringent regulations on water quality. Wastewaters from food conservation are especially difficult to treat, since they have high salinity and high organic matter concentration. The aim of this work is the treatment of the effluent from a table olive fermentation process (FTOP) with the aim of reusing it once the organic matter is separated. The process proposed in this work consists of the following membrane-based technologies: Ultrafiltration (UF) (UP005, Microdyn Nadir), Forward Osmosis (FO) (Osmen2521, Hydration Technology Innovation) and Nanofiltration (NF) (NF245, Dow). The FO process was implemented to reduce the salinity entering the NF process, using the FTOP as draw solution and, at the same time, to concentrate the centrate produced in the sludge treatment of a municipal wastewater treatment plant with the aim of obtaining a stream enriched in nutrients. The UF step achieved the elimination of 50% of the chemical oxygen demand of the FTOP. The UF permeate was pumped to the FO system reducing the volume of the anaerobically digested sludge centrate (ADSC) by a factor of 3 in 6.5 h. Finally, the ultrafiltrated FTOP diluted by FO was subjected to NF. The transmembrane pressure needed in the NF stage was 40% lower than that required if the ultrafiltration permeate was directly nanofiltered. By means of the integrated process, the concentration of organic matter and phenolic compounds in the FTOP decreased by 97%. Therefore, the proposed process was able to obtain a treated brine that could be reused in other processes and simultaneously to concentrate a stream, such as the ADSC.

2.
J Hazard Mater ; 290: 51-9, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25744202

RESUMO

Table olive processing wastewaters (TOPW) have high salt concentration and total phenolic content (TPC) causing many environmental problems. To reduce them, ultrafiltration (UF) was applied for treating TOPW. However, NaCl, which is the main responsible of salinity in TOPW, and phenols are small molecules that cannot be separated by conventional UF membranes. They have serious problems caused by fouling, which can be overcome using membrane modification techniques. For these reasons, photomodification may be an effective technique to obtain a stream rich in TPC due to the changes in membrane surface properties. UV-modification in the presence of two hydrophilic compounds (polyethylene glycol and aluminium oxide) was performed to achieve membranes with high reductions of organic matter and to keep the TPC as high as possible. Commercial polyethersulfone (PES) membranes of 30 kDa were used. Surface modification was evaluated using FTIR-ATR spectroscopy and membrane performance was studied by calculating the rejection ratios of colour, chemical oxygen demand (COD) and TPC. Results demonstrated that UF is a useful pre-treatment to reduce organic matter from TOPW, obtaining a permeate rich in TPC. PES/Al2O3 membranes displayed superior antifouling properties and rejection values, keeping high the TPC (>95%). Therefore, UF using modified membranes is an appropriate and sustainable technique for treating TOPW.


Assuntos
Resíduos Industriais , Olea , Fenóis/química , Eliminação de Resíduos Líquidos/métodos , Óxido de Alumínio/química , Análise da Demanda Biológica de Oxigênio , Indicadores e Reagentes , Membranas Artificiais , Fenóis/isolamento & purificação , Fotoquímica , Polietilenoglicóis/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...