Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 18(2): 638-49, 2013 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-23276949

RESUMO

Metabolic syndrome is a major health issue in the western world. An elevated pro-inflammatory state is often found in patients with metabolic diseases such as type 2 diabetes and obesity. Atherosclerosis is one such clinical manifestation of pro-inflammatory state associated with the vasculature. The exact mechanism by which metabolic stress induces this pro-inflammatory status and promotes atherogenesis remained elusive until the discovery of the inflammasome protein complex. This complex is composed of pro-caspase-1 and pathogen sensors. Activation of inflammasome requires the transcriptional upregulation of inflammasome components and the post-translational assembly. Three models of inflammasome assembly have been proposed: 1) the ion channel model; 2) the reactive oxygen species (ROS) model; and 3) the lysosome model. In either case, inflammasome activation triggers the auto-activation of pro-caspase-1 into its mature form. Caspase-1, which was first discovered as the IL-1ß converting enzyme, is known to be a major player in inflammatory and cell death pathways. Many endogenous metabolic ligands have been experimentally shown to activate inflammasome, and thus initiate the subsequent inflammation process. Further understanding of the distinct molecular mechanism by which metabolic ligands activates inflammasome could lead to developing novel therapeutic interventions for atherosclerosis and other clinical problems related to metabolic diseases.


Assuntos
Caspase 1/metabolismo , Inflamassomos/fisiologia , Inflamação/etiologia , Estresse Fisiológico/fisiologia , Aterosclerose/etiologia , Proteínas de Transporte/fisiologia , Ativação Enzimática , Humanos , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio/farmacologia
2.
J Clin Exp Cardiolog ; 2012(Suppl 12): 2, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23997979

RESUMO

Atherosclerosis is a chronic autoimmune inflammatory disease. The involvement of both innate and adaptive immune responses in the pathogenesis of the disease has been well recognized. Tregs are an essential part of the immune system and have indispensable functions in maintaining immune system homeostasis, mediating peripheral tolerance, preventing autoimmune diseases, and suppressing inflammatory and proatherogenic immune response. Tregs carry out their immunosuppressive functions via several mechansims. One of the well-documented suppressive mechanisms of Tregs is the secretion of anti-inflammatory cytokines including IL-10, TGF-ß, and IL-35. Studies have found that IL-10 and TGF-ß have atheroprotective properties. In addition, Tregs can suppress the activity of proatherogenic effector T cells, suggesting an atheroprotective role. In fact, fewer Tregs are found in atherogenic ApoE-/- mice comparing to wild-type mice, suggesting an uncontrolled balance between weakened Tregs and effector T cells in atherogenesis. Some clinical studies of autoimmune diseases also suggest that decreased Tregs numbers are associated with increased disease activity. The importance of Tregs in many autoimmune diseases and experimental atherosclerosis has been established in in vivo and in vitro studies. However, the roles of Tregs in atherosclerosis in the clinical setting remains to be further characterized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...