Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Bioeng Biomech ; 24(1): 39-47, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38314465

RESUMO

As it is widely stated in the literature, biofilms are responsible for most chronic infections, which have grown exponentially over the past three decades. The use of so-called alloys, as a new generation of materials, enables us to find the golden mean in the arena widely known as implantology. The use of the surface layer, using the chosen Atomic Layer Deposition method, is to be the basis for minimizing the risk of an organism reactions. Therefore, the primary objective of this study was to observe the impact of physicochemical properties of the surface layers (bactericidal) on the processes that occur on the implants surface made of titanium biomaterials used in bone structures. The study also attempted to evaluate the physicochemical properties of the ZnO coatings, deposited on the substrate of one of the new generation Ti13Nb13Zr alloys, using the ALD method. Included in the assessment of the physicochemical properties of the surface layers formed in this manner, we perform pitting corrosion resistance tests, scratch tests, tribological tests and surface wettability tests. Based on the obtained data, the differing physicochemical properties of the alloy with ZnO coatings are found to be dependent on the applied surface modification. For the conducted tests, differences are determined for the tests on the corrosion resistance, surface wettability and the abrasion resistance for samples with and without the ZnO coating. In addition, tests show that the coating applied to the alloy, which is previously subjected to the sand-blasted process, is characterized by improved adhesion.

2.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299324

RESUMO

Despite the obvious benefits of using ureteral stents to drain the ureters, there is also a risk of complications from 80-90%. The presence of a foreign body in the human body causes disturbances in its proper functioning. It can lead to biofilm formation on the stent surface, which may favor the development of urinary tract infections or the formation of encrustation, as well as stent fragmentation, complicating its subsequent removal. In this work, the effect of the polymeric coating containing the active substance-papaverine hydrochloride on the functional properties of ureteral stents significant for clinical practice were assessed. Methods: The most commonly clinically used polyurethane ureteral Double-J stent was selected for the study. Using the dip-coating method, the surface of the stent was coated with a poly(D,L-lactide-glycolide) (PLGA) coating containing the papaverine hydrochloride (PAP). In particular, strength properties, retention strength of the stent ends, dynamic frictional force, and the fluoroscopic visibility of the stent during X-ray imaging were determined. Results: The analysis of the test results indicates the usefulness of a biodegradable polymer coating containing the active substance for the modification of the surface of polyurethane ureteral stents. The stents coated with PLGA+PAP coating compared to polyurethane stents are characterized by more favorable strength properties, the smaller value of the dynamic frictional force, without reducing the fluoroscopic visibility.


Assuntos
Stents Farmacológicos , Papaverina/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Obstrução Ureteral/terapia , Implantes Absorvíveis , Materiais Biocompatíveis/farmacologia , Humanos , Papaverina/metabolismo , Poliuretanos/química , Obstrução Ureteral/metabolismo , Obstrução Ureteral/cirurgia
3.
Materials (Basel) ; 13(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187087

RESUMO

Despite high interest in the issues of hemocompatibility of titanium implants, particularly those made of the Ti-13Nb-13Zr alloy, the applied methods of surface modification still do not always guarantee the physicochemical properties required for their safe operation. The factors that reduce the efficiency of the application of titanium alloys in the treatment of conditions of the cardiovascular system include blood coagulation and fibrous proliferation within the vessel's internal walls. They result from their surfaces' physicochemical properties not being fully adapted to the specifics of the circulatory system. Until now, the generation and development mechanics of these adverse processes are not fully known. Thus, the fundamental problem in this work is to determine the correlation between the physicochemical properties of the diamond like carbon (DLC) coating (shaped by the technological conditions of the process) applied onto the Ti-13Nb-13Zr alloy designed for contact with blood and its hemocompatibility. In the paper, microscopic metallographic, surface roughness, wettability, free surface energy, hardness, coating adhesion to the substrate, impendence, and potentiodynamic studies in artificial plasma were carried out. The surface layer with the DLC coating ensures the required surface roughness and hydrophobic character and sufficient pitting corrosion resistance in artificial plasma. On the other hand, the proposed CrN interlayer results in better adhesion of the coating to the Ti-13Nb-13Zr alloy. This type of coating is an alternative to the modification of titanium alloy surfaces using various elements to improve the blood environment's hemocompatibility.

4.
Acta Bioeng Biomech ; 19(2): 21-30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28869625

RESUMO

PURPOSE: High purity, fine crystalline, degradation-free at low temperature powders have attracted special interest in CAD/CAM prosthetic dentistry full ceramic restorations. This study reports the preparation and characterisation of zirconia-ceria (0.9 ZrO2 0.1 CeO2) powders. Materials were obtained from zirconium-n-alkoxide and cerium nitrate hexahydrate in the pH 2-4 and 8-10. METHODS: Zirconia- ceria powders were obtained with the sol-gel method in a humid-free environment. Thermal analysis (TGA/DTA) of the as-prepared materials was made for an assessment of its behaviour at elevated temperatures. Specimens were dried at 80 °C and calcinated in two stages: at 300 °C with soaking time 2.5 h and 850 °C with holding time 2.5 h, in order to evaluate the phase transformations. Thermal analyses of the as-dried powders were made for an assessment of its thermal behaviour during heat treatment up to 1000 °C. By X-ray diffraction (XRD), polymorphs of ZrO2 were identified. Additionally, scanning electron microscopy (SEM) and laser particle size distribution (PSD) were involved for characterisation of morphology of the powders. RESULTS: A correlation between the pH of the colloidal system and the morphology of the as-obtained powders were found. Based on analysis (SEM, PSD), structures were identified known as soft and hard agglomerates. CONCLUSIONS: It can be stated that differences found between powder morphology were dependent on the value pH used, which can be crucial for powder densification during sintering and compacting green bodies which, as a consequence, may be crucial for the lifetime of zirconia prostheses. Correlations between phase composition and pH are difficult to grasp, and require further, more sophisticated, studies.


Assuntos
Cério/química , Coloides/química , Materiais Dentários/síntese química , Excipientes/química , Nanocompostos/química , Nanocompostos/ultraestrutura , Zircônio/química , Concentração de Íons de Hidrogênio , Teste de Materiais , Tamanho da Partícula , Transição de Fase , Pós
5.
Acta Bioeng Biomech ; 18(3): 53-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27840448

RESUMO

PURPOSE: The main objective of this study was to obtain single-phase ß-ZrO2 powders with so-called soft agglomerates reproducibile morphology with acetyl-acetone as a chelating-agent. To the best of our knowledge there is no avaiable data which determine the effect of acetyl acetone on the phase composition and morphology of ceria-doped ZrO2 powders for biomedical applications. METHODS: Twenty variants of powders with different water to zirconia precursor and acetylacetone to zirconia precursor molar ratios were prepared. 0.9ZrO20.1CeO2 powders were obtained by a hydrolysis and condensation and further calcination of zirconium n-propoxide in a simple one-step sol-gel process. Influence of acetyloacetone to zirconia precursor on the phase composition ratio and water to zirconia precursor was investigated. Samples have been characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), thermal analysis (TGA/DTA) and scanning electron microscopy (SEM) measurements. RESULTS: Ceramic powders prepared by sol-gel process, according to the various concentration of chelating agent and water show different morphology and phase composition. CONCLUSIONS: Higher molar ratios of AcAc in range with smaller amounts of water cause hard agglomerates, obtained powders are characterized by highly thermally stable behaviour and various phase composition. With higher molar ratios of water to zirconium-n-propoxide so-called soft agglomerates and one phase powders are obtained.


Assuntos
Cerâmica/farmacologia , Cério/farmacologia , Quelantes/química , Prótese Dentária/métodos , Pentanonas/química , Transição de Fase , Zircônio/farmacologia , Hidrólise , Pós , Análise Espectral Raman , Temperatura , Difração de Raios X
6.
Mater Sci Eng C Mater Biol Appl ; 63: 155-63, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27040207

RESUMO

The study of most of the literature devoted to the use of coronary stents indicates that their efficiency is determined by the physicochemical properties of the implant surface. Therefore, the authors of this study suggested conditions for the formation of SiO2 layers obtained with the use of sol-gel methodology showing physicochemical properties adequate to the specific conditions of the cardio-vascular system. Previous experience of authors helped them much to optimize the coating of 316LVM steel surface with SiO2. The values of parameters that determine the usefulness of the coating in medical applications have been determined. In order to identify the phenomena taking place at the boundary of phases and to evaluate the usefulness of the proposed surface modification, taking into consideration the medical sterilization (steam or ethylene oxide (EO)), the potentiodynamic, impedance, adhesion, surface morphology and biological assessment characterizations were performed. Regardless of the usage of the sterilizing agent (steam, EO) the study showed the reduction of critical force causing layer's delamination. The research results of corrosion resistance study also confirmed a slight decrease of SiO2 barrier properties of the samples after sterilization in contact with the artificial plasma. SiO2 layers after the sterilization process did not show significant features of cytotoxicity and had no negative influence on blood cell counts, which confirmed the results of quantitative and qualitative studies.


Assuntos
Materiais Revestidos Biocompatíveis/química , Dióxido de Silício/química , Aço Inoxidável/química , Materiais Revestidos Biocompatíveis/farmacologia , Espectroscopia Dielétrica , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Análise Espectral Raman
7.
Biomatter ; 4: e28535, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482412

RESUMO

The aim of this paper was to evaluate the usefulness of the sol-gel method application, to modificate the surface of the Ti6Al7Nb alloy and the cpTi titanium (Grade 4) with SiO2 oxide, applied on the vascular implants to improve their hemocompatibility. Mechanical treatment was followed by film deposition on surface of the titanium samples. An appropriate selection of the process parameters was verified in the studies of corrosion, using potentiodynamic and impedance method. A test was conducted in the solution simulating blood vessels environment, in simulated body fluid at t = 37.0 ± 1 °C and pH = 7.0 ± 0.2. Results showed varied electrochemical properties of the SiO2 film, depending on its deposition parameters. Correlations between corrosion resistance and layer adhesion to the substrate were observed, depending on annealing temperature.


Assuntos
Prótese Vascular , Dióxido de Silício/química , Titânio/química , Vasos Sanguíneos/fisiopatologia , Corrosão , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais/métodos , Propriedades de Superfície , Temperatura
8.
Acta Bioeng Biomech ; 16(4): 99-106, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25597451

RESUMO

PURPOSE: This paper is focused on the works concerning preparation of zirconium oxide ceramic blocks recommended for CAD/CAM systems used in prosthetic dentistry for manufacturing fixed prosthetic restorations. METHODS: Zirconium-yttrium-magnesium mixed ceramic oxides were prepared by sol-gel method via hydrolysis and condensation of zirconium alkoxide precursor (zirconium (IV) propoxide) with yttrium and magnesium nitrates diluted in 2-propanol. The aim of this work was to obtain 2% mol yttria-stabilized zirconia ceramic powders with magnesium as an additional tetragonal ZrO2 phase stabilizer in amount between 2÷6% mol (with 2% variable). Prepared gels were dried (24 h at 65 °C). Obtained powders were mixed with binder (carboxymethyl cellulose) and uniaxial pressed into specimens with a dimensions 38 × 22 × 6 mm. Afterwards green bodies were sintered in range of temperature between 1350-1550 °C. Powders and blocks were characterized by Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, Specific Area Measurement. RESULTS: Highly homogeneous powders with a low open porosity were obtained. Prepared blocks after sintering showed numerous cracks. Nevertheless blocks were fine grained and showed quite reproducible chemical composition. CONCLUSION: A sol gel wet chemical route of powder synthesis allow us to obtain high homogenous ceramic materials with inconsiderable amount of pores with low variation in dimensions. In spite of a reproducible synthesis methods of a ceramic powders, applied to prepare green bodies procedure and sintering manner do not allowed to obtain zirconia cermic blocks free from cracks.


Assuntos
Óxido de Magnésio/química , Tecnologia Odontológica/métodos , Ítrio/química , Zircônio/química , Adsorção , Géis , Microscopia Eletrônica de Varredura , Nitrogênio/química , Pós , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
9.
Acta Bioeng Biomech ; 15(4): 19-23, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24479579

RESUMO

The influence of the wear rate of drills used in bone surgery on the temperature distribution in the femur models (Sawbones) is presented in the paper. Surgical drills of diameter d = 4.5 mm and diverse edge geometry (90° and 120°) were selected for the study. In order to carry out thermal analysis with the use of finite element, experimental studies of wear process were necessary. These studies, among others, consisted in determination of average values of axial forces and cutting torques as a function of the number of drilled holes. The study showed an impact of the drill geometry on values that describe cutting process. It was found that the greatest values of torques and axial cutting forces occur in drills of point angle of 120°. Next, in order to determine the effect of wear rate on the generation of temperature in the cutting zone, thermal analysis of the drilling process using the finite element method was carried out. It was found that higher temperatures in the bone are observed for drilling with the use of the drill of point angle equal to 120°, as in the experimental study. For the tools of such edge geometry the wear of cutting edge is more intensive and the generated temperature in femur for the wear land VBB = 0.32 mm has reached the critical value associated with the process of thermal necrosis.


Assuntos
Fêmur/cirurgia , Fricção , Temperatura Alta , Estresse Mecânico , Instrumentos Cirúrgicos/efeitos adversos , Fêmur/patologia , Temperatura Alta/efeitos adversos , Modelos Teóricos , Necrose/etiologia , Torque
10.
Acta Bioeng Biomech ; 13(4): 29-36, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22339223

RESUMO

This paper presents the results of numerical analysis and experimental studies of the process of bone drilling using drills applied in osteosynthesis procedures. In the studies, two surgical drills with a diameter d = 4.5 mm and varying in drill point geometry 2κ were used. Thermal analysis based on FEM allowed determining the distribution of temperatures generated in the bone as a function of rotational speed of the drill. The results indicate that both drill point geometry and rotational speed of the drill have influence on temperatures generated in bone tissue. Additionally, the range was determined for possible values of rotational speed, which does not initiate the process of thermal necrosis of bone. The experimental studies of the process of drilling in a femur model showed the impact of drill point geometry on the values describing the cutting process. It was concluded that the highest values of torques and axial forces during cutting occur in the tools with angle 2κ2 = 120°.


Assuntos
Fixação Interna de Fraturas/instrumentação , Análise Numérica Assistida por Computador , Fêmur/cirurgia , Análise de Elementos Finitos , Teste de Materiais , Modelos Teóricos , Rotação , Estresse Mecânico , Temperatura , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA