Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 30: 101242, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35280523

RESUMO

The thermal unfolding of the copper redox protein azurin was studied in the presence of four different dipeptide-based ionic liquids (ILs) utilizing tetramethylguanidinium as the cation. The four dipeptides have different sequences including the amino acids Ser and Asp: TMG-AspAsp, TMG-SerSer, TMG-SerAsp, and TMG-AspSer. Thermal unfolding curves generated from temperature-dependent fluorescence spectroscopy experiments showed that TMG-AspAsp and TMG-SerSer have minor destabilizing effects on the protein while TMG-AspSer and TMG-SerAsp strongly destabilize azurin. Red-shifted fluorescence signatures in the 25 °C correlate with the observed protein destabilization in the solutions with TMG-AspSer and TMG-SerAsp. These signals could correspond to interactions between the Asp residue in the dipeptide and the azurin Trp residue in the unfolded state. These results, supported by appropriate control experiments, suggest that dipeptide sequence-specific interactions lead to selective protein destabilization and motivate further studies of TMG-dipeptide ILs.

2.
Int J Biol Macromol ; 180: 355-364, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744247

RESUMO

The thermal unfolding of the copper redox protein azurin was studied in the presence of four different amino acid-based ionic liquids (ILs), all of which have tetramethylguanidium as cation. The anionic amino acid includes two with alcohol side chains, serine and threonine, and two with carboxylic acids, aspartate and glutamate. Control experiments showed that amino acids alone do not significantly change protein stability and pH changes anticipated by the amino acid nature have only minor effects on the protein. With the ILs, the protein is destabilized and the melting temperature is decreased. The two ILs with alcohol side chains strongly destabilize the protein while the two ILs with acid side chains have weaker effects. Unfolding enthalpy (ΔHunf°) and entropy (ΔSunf°) values, derived from fits of the unfolding data, show that some ILs increase ΔHunf°while others do not significantly change this value. All ILs, however, increase ΔSunf°. MD simulations of both the folded and unfolded protein conformations in the presence of the ILs provide insight into the different IL-protein interactions and how they affect the ΔHunf° values. The simulations also confirm that the ILs increase the unfolded state entropies which can explain the increased ΔSunf° values.


Assuntos
Aminoácidos/química , Azurina/química , Entropia , Líquidos Iônicos/química , Metilguanidina/análogos & derivados , Metilguanidina/química , Temperatura de Transição , Ânions/química , Azurina/metabolismo , Cátions/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química , Líquidos Iônicos/metabolismo , Simulação de Dinâmica Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína
3.
Molecules ; 26(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478102

RESUMO

In the past decade, innovative protein therapies and bio-similar industries have grown rapidly. Additionally, ionic liquids (ILs) have been an area of great interest and rapid development in industrial processes over a similar timeline. Therefore, there is a pressing need to understand the structure and function of proteins in novel environments with ILs. Understanding the short-term and long-term stability of protein molecules in IL formulations will be key to using ILs for protein technologies. Similarly, ILs have been investigated as part of therapeutic delivery systems and implicated in numerous studies in which ILs impact the activity and/or stability of protein molecules. Notably, many of the proteins used in industrial applications are involved in redox chemistry, and thus often contain metal ions or metal-associated cofactors. In this review article, we focus on the current understanding of protein structure-function relationship in the presence of ILs, specifically focusing on the effect of ILs on metal containing proteins.


Assuntos
Líquidos Iônicos/farmacologia , Metaloproteínas/química , Metaloproteínas/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...