Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 25(4): 309-332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38081975

RESUMO

The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.


Assuntos
Cromatina , Histonas , Humanos , Histonas/metabolismo , Nucleossomos , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , DNA , Trifosfato de Adenosina/metabolismo
2.
Gene ; 890: 147798, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37726026

RESUMO

Histones are subject to a diverse array of post-translational modifications. Among them, lysine acetylation is not only the most pervasive and dynamic modification but also highly consequential for regulating gene transcription. Although enzymes responsible for the addition and removal of acetyl groups were discovered almost 30 years ago, high-resolution structures of the enzymes in the context of their native complexes are only now beginning to become available, thanks to revolutionary technologies in protein structure determination and prediction. Here, we will review our current understanding of the molecular mechanisms of acetylation and deacetylation engendered by chromatin-modifying complexes, compare and contrast shared features, and discuss some of the pressing questions for future studies.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Histonas/metabolismo , Acetilação , Biologia
3.
Nat Commun ; 14(1): 3061, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244892

RESUMO

The Rpd3L histone deacetylase (HDAC) complex is an ancient 12-subunit complex conserved in a broad range of eukaryotes that performs localized deacetylation at or near sites of recruitment by DNA-bound factors. Here we describe the cryo-EM structure of this prototypical HDAC complex that is characterized by as many as seven subunits performing scaffolding roles for the tight integration of the only catalytic subunit, Rpd3. The principal scaffolding protein, Sin3, along with Rpd3 and the histone chaperone, Ume1, are present in two copies, with each copy organized into separate lobes of an asymmetric dimeric molecular assembly. The active site of one Rpd3 is completely occluded by a leucine side chain of Rxt2, while the tips of the two lobes and the more peripherally associated subunits exhibit varying levels of flexibility and positional disorder. The structure reveals unexpected structural homology/analogy between unrelated subunits in the fungal and mammalian complexes and provides a foundation for deeper interrogations of structure, biology, and mechanism of these complexes, as well as for the discovery of HDAC complex-specific inhibitors.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Histona Desacetilases/metabolismo , Microscopia Crioeletrônica , Regulação Fúngica da Expressão Gênica
4.
Elife ; 112022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36263929

RESUMO

The NuA4 protein complex acetylates histones H4 and H2A to activate both transcription and DNA repair. We report the 3.1-Å resolution cryo-electron microscopy structure of the central hub of NuA4, which flexibly tethers the histone acetyltransferase (HAT) and Trimer Independent of NuA4 involved in Transcription Interactions with Nucleosomes (TINTIN) modules. The hub contains the large Tra1 subunit and a core that includes Swc4, Arp4, Act1, Eaf1, and the C-terminal region of Epl1. Eaf1 stands out as the primary scaffolding factor that interacts with the Tra1, Swc4, and Epl1 subunits and contributes the conserved HSA helix to the Arp module. Using nucleosome-binding assays, we find that the HAT module, which is anchored to the core through Epl1, recognizes H3K4me3 nucleosomes with hyperacetylated H3 tails, while the TINTIN module, anchored to the core via Eaf1, recognizes nucleosomes that have hyperacetylated H2A and H4 tails. Together with the known interaction of Tra1 with site-specific transcription factors, our data suggest a model in which Tra1 recruits NuA4 to specific genomic sites then allowing the flexible HAT and TINTIN modules to select nearby nucleosomes for acetylation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Histona Acetiltransferases/metabolismo , Acetilação
5.
Curr Opin Struct Biol ; 61: 17-24, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31751889

RESUMO

TFIID is a large multiprotein assembly that serves as a general transcription factor for transcription initiation by eukaryotic RNA polymerase II (Pol II). TFIID is involved in the recognition of the core promoter sequences and neighboring chromatin marks, and can interact with gene-specific activators and repressors. In order to obtain a better molecular and mechanistic understanding of the function of TFIID, its structure has been pursued for many years. However, the scarcity of TFIID and its highly flexible nature have made this pursuit very challenging. Recent breakthroughs, largely due to methodological advances in cryo-electron microscopy, have finally described the structure of this complex, both alone and engaged with core promoter DNA, revealing the functional significance of its conformational complexity in the process of core promoter recognition and initiation of Pol II transcription. Here, we review these recent structural insights and discuss their implications for our understanding of eukaryotic transcription initiation.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Regiões Promotoras Genéticas , Conformação Proteica , Fator de Transcrição TFIID/química , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIID/metabolismo
6.
Elife ; 82019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31886770

RESUMO

Eukaryotic DNA is packaged into nucleosome arrays, which are repositioned by chromatin remodeling complexes to control DNA accessibility. The Saccharomyces cerevisiae RSC (Remodeling the Structure of Chromatin) complex, a member of the SWI/SNF chromatin remodeler family, plays critical roles in genome maintenance, transcription, and DNA repair. Here, we report cryo-electron microscopy (cryo-EM) and crosslinking mass spectrometry (CLMS) studies of yeast RSC complex and show that RSC is composed of a rigid tripartite core and two flexible lobes. The core structure is scaffolded by an asymmetric Rsc8 dimer and built with the evolutionarily conserved subunits Sfh1, Rsc6, Rsc9 and Sth1. The flexible ATPase lobe, composed of helicase subunit Sth1, Arp7, Arp9 and Rtt102, is anchored to this core by the N-terminus of Sth1. Our cryo-EM analysis of RSC bound to a nucleosome core particle shows that in addition to the expected nucleosome-Sth1 interactions, RSC engages histones and nucleosomal DNA through one arm of the core structure, composed of the Rsc8 SWIRM domains, Sfh1 and Npl6. Our findings provide structural insights into the conserved assembly process for all members of the SWI/SNF family of remodelers, and illustrate how RSC selects, engages, and remodels nucleosomes.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/química , Proteínas de Ligação a DNA/química , Nucleossomos/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Microscopia Crioeletrônica , Reparo do DNA/genética , DNA Fúngico/química , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Nucleossomos/genética , Nucleossomos/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/genética , Fatores de Transcrição/ultraestrutura
7.
Science ; 362(6421)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30442764

RESUMO

The general transcription factor IID (TFIID) is a critical component of the eukaryotic transcription preinitiation complex (PIC) and is responsible for recognizing the core promoter DNA and initiating PIC assembly. We used cryo-electron microscopy, chemical cross-linking mass spectrometry, and biochemical reconstitution to determine the complete molecular architecture of TFIID and define the conformational landscape of TFIID in the process of TATA box-binding protein (TBP) loading onto promoter DNA. Our structural analysis revealed five structural states of TFIID in the presence of TFIIA and promoter DNA, showing that the initial binding of TFIID to the downstream promoter positions the upstream DNA and facilitates scanning of TBP for a TATA box and the subsequent engagement of the promoter. Our findings provide a mechanistic model for the specific loading of TBP by TFIID onto the promoter.


Assuntos
Regiões Promotoras Genéticas , Proteína de Ligação a TATA-Box/química , Fator de Transcrição TFIID/química , Iniciação da Transcrição Genética , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Humanos , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica
8.
ACS Chem Biol ; 13(1): 141-151, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29161022

RESUMO

Daunorubicin is a type II polyketide, one of a large class of polyaromatic natural products with anticancer, antibiotic, and antiviral activity. Type II polyketides are formed by the assembly of malonyl-CoA building blocks, though in rare cases, biosynthesis is initiated by the incorporation of a nonmalonyl derived starter unit, which adds molecular diversity to the poly-ß-ketone backbone. Priming mechanisms for the transfer of novel starter units onto polyketide synthases (PKS) are still poorly understood. Daunorubicin biosynthesis incorporates a unique propionyl starter unit thought to be selected for by a subclass ("DpsC type") of priming ketosynthases (KS III). To date, however, no structural information exists for this subclass of KS III enzymes. Although selectivity for self-acylation with propionyl-CoA has previously been implied, we demonstrate that DpsC shows no discrimination for self-acylation or acyl-transfer to the cognate acyl carrier protein, DpsG with short acyl-CoAs. We present five crystal structures of DpsC, including apo-DpsC, acetyl-DpsC, propionyl-DpsC, butyryl-DpsC, and a cocrystal of DpsC with a nonhydrolyzable phosphopantetheine (PPant) analogue. The DpsC crystal structures reveal the architecture of the active site, the molecular determinants for catalytic activity and homology to O-malonyl transferases, but also indicate distinct differences. These results provide a structural basis for rational engineering of starter unit selection in type II polyketide synthases.


Assuntos
Daunorrubicina/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Acilação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Malonil Coenzima A/química , Malonil Coenzima A/metabolismo , Modelos Moleculares , Policetídeo Sintases/genética , Conformação Proteica , Streptomyces/enzimologia
9.
Curr Opin Struct Biol ; 47: 60-66, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28624568

RESUMO

TFIID is a critical component of the eukaryotic transcription pre-initiation complex (PIC) required for the recruitment of RNA Pol II to the start site of protein-coding genes. Within the PIC, TFIID's role is to recognize and bind core promoter sequences and recruit the rest of the PIC components. Due to its size and its conformational complexity, TFIID poses a serious challenge for structural characterization. The small amounts of purified TFIID that can be obtained by present methods of purification from endogenous sources has limited structural studies to cryo-EM visualization, which requires very small amounts of sample. Previous cryo-EM studies have shed light on how the extreme conformational flexibility of TFIID is involved in core promoter DNA binding. Recent progress in cryo-EM methodology has facilitated a parallel progress in the study of human TFIID, leading to an improvement in resolution and the identification of the structural elements in the complex directly involved in DNA interaction. While many questions remain unanswered, the present structural knowledge of human TFIID suggests a mechanism for the sequential engagement with different core promoter sequences and how it could be influenced by regulatory factors.


Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , Regiões Promotoras Genéticas , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/metabolismo , Humanos , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , Relação Estrutura-Atividade
10.
ACS Chem Biol ; 11(4): 1137-47, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26813028

RESUMO

Cores of aromatic polyketides are essential for their biological activities. Most type II polyketide synthases (PKSs) biosynthesize these core structures involving the minimal PKS, a PKS-associated ketoreductase (KR) and aromatases/cyclases (ARO/CYCs). Oxygenases (OXYs) are rarely involved. BE-7585A is an anticancer polyketide with an angucyclic core. (13)C isotope labeling experiments suggest that its angucyclic core may arise from an oxidative rearrangement of a linear anthracyclinone. Here, we present the crystal structure and functional analysis of BexE, the oxygenase proposed to catalyze this key oxidative rearrangement step that generates the angucyclinone framework. Biochemical assays using various linear anthracyclinone model compounds combined with docking simulations narrowed down the substrate of BexE to be an immediate precursor of aklaviketone, possibly 12-deoxy-aklaviketone. The structural analysis, docking simulations, and biochemical assays provide insights into the role of BexE in BE-7585A biosynthesis and lay the groundwork for engineering such framework-modifying enzymes in type II PKSs.


Assuntos
Policetídeo Sintases/metabolismo , Tioaçúcares/metabolismo , Conformação Molecular , Oxirredução
11.
Proc Natl Acad Sci U S A ; 112(50): E6844-51, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26631750

RESUMO

Aromatic polyketides make up a large class of natural products with diverse bioactivity. During biosynthesis, linear poly-ß-ketone intermediates are regiospecifically cyclized, yielding molecules with defined cyclization patterns that are crucial for polyketide bioactivity. The aromatase/cyclases (ARO/CYCs) are responsible for regiospecific cyclization of bacterial polyketides. The two most common cyclization patterns are C7-C12 and C9-C14 cyclizations. We have previously characterized three monodomain ARO/CYCs: ZhuI, TcmN, and WhiE. The last remaining uncharacterized class of ARO/CYCs is the di-domain ARO/CYCs, which catalyze C7-C12 cyclization and/or aromatization. Di-domain ARO/CYCs can further be separated into two subclasses: "nonreducing" ARO/CYCs, which act on nonreduced poly-ß-ketones, and "reducing" ARO/CYCs, which act on cyclized C9 reduced poly-ß-ketones. For years, the functional role of each domain in cyclization and aromatization for di-domain ARO/CYCs has remained a mystery. Here we present what is to our knowledge the first structural and functional analysis, along with an in-depth comparison, of the nonreducing (StfQ) and reducing (BexL) di-domain ARO/CYCs. This work completes the structural and functional characterization of mono- and di-domain ARO/CYCs in bacterial type II polyketide synthases and lays the groundwork for engineered biosynthesis of new bioactive polyketides.


Assuntos
Aromatase/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Aromatase/química , Aromatase/genética , Modelos Moleculares , Mutagênese , Policetídeo Sintases/genética , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...