Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Biomed Pharmacother ; 177: 117058, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968797

RESUMO

The NF-κB pathway plays a pivotal role in impeding the diabetic wound healing process, contributing to prolonged inflammation, diminished angiogenesis, and reduced proliferation. In contrast to modern synthetic therapies, naturally occurring phytoconstituents are well-studied inhibitors of the NF-κB pathway that are now attracting increased attention in the context of diabetic wound healing because of lower toxicity, better safety and efficacy, and cost-effectiveness. This study explores recent research on phytoconstituent-based therapies and delve into their action mechanisms targeting the NF-κB pathway and potential for assisting effective healing of diabetic wounds. For this purpose, we have carried out surveys of recent literature and analyzed studies from prominent databases such as Science Direct, Scopus, PubMed, Google Scholar, EMBASE, and Web of Science. The classification of phytoconstituents into various categorie such as: alkaloids, triterpenoids, phenolics, polyphenols, flavonoids, monoterpene glycosides, naphthoquinones and tocopherols. Noteworthy phytoconstituents, including Neferine, Plumbagin, Boswellic acid, Genistein, Luteolin, Kirenol, Rutin, Vicenin-2, Gamma-tocopherol, Icariin, Resveratrol, Mangiferin, Betulinic acid, Berberine, Syringic acid, Gallocatechin, Curcumin, Loureirin-A, Loureirin-B, Lupeol, Paeoniflorin, and Puerarin emerge from these studies as promising agents for diabetic wound healing through the inhibition of the NF-κB pathway. Extensive research on various phytoconstituents has revealed how they modulate signalling pathways, including NF-κB, studies that demonstrate the potential for development of therapeutic phytoconstituents to assist healing of chronic diabetic wounds.

3.
Int J Biol Macromol ; 271(Pt 2): 132374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754669

RESUMO

The controlled delivery of the desired bioactive molecules is required to achieve the maximum therapeutic effects with minimum side effects. Biopolymer-based hydrogels are ideal platforms for delivering the desired molecules owing to their superior biocompatibility, biodegradability, and low-immune response. However, the prolonged delivery of the drugs through biopolymer-based hydrogels is restricted due to their weak mechanical stability. We developed mechanically tough and biocompatible hydrogels to address these limitations using carboxymethyl chitosan, sodium alginate, and nanocellulose for sustained drug delivery. The hydrogels were cross-linked through calcium ions to enhance their mechanical strength. Nanocellulose-added hydrogels exhibited improved mechanical strength (Young's modulus; 23.36 â†’ 30.7 kPa, Toughness; 1.39 â†’ 5.65 MJm-3) than pure hydrogels. The composite hydrogels demonstrated increased recovery potential (66.9 â†’ 84.5 %) due to the rapid reformation of damaged polymeric networks. The hydrogels were stable in an aqueous medium and demonstrated reduced swelling potential. The hydrogels have no adverse effects on embryonic murine fibroblast (3 T3), showing their biocompatibility. No bacterial growth was observed in hydrogels-treated groups, indicating their antibacterial characteristics. The sustained drug released was observed from nanocellulose-assisted hydrogel scaffolds compared to the pure polymer hydrogel scaffold. Thus, hydrogels have potential and could be used as a sustained drug carrier.


Assuntos
Celulose , Quitosana , Hidrogéis , Celulose/química , Celulose/análogos & derivados , Hidrogéis/química , Camundongos , Animais , Quitosana/química , Quitosana/análogos & derivados , Sistemas de Liberação de Medicamentos , Alginatos/química , Materiais Biocompatíveis/química , Liberação Controlada de Fármacos , Preparações de Ação Retardada , Portadores de Fármacos/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Nanopartículas/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-38726781

RESUMO

Flos Magnoliae is one of the important medicinal plants in different traditional medicine, including Chinese herbal medicine. Lignans and neolignans, including tetrahydrofurofuran, tetrahydrofuran, and aryltetralin, are present in the Flos Magnoliae species. A wide range of pharmacological activity of Flos Magnoliae has been reported in medicine. Fargesin has been isolated from Magnolia fargesii and is a lignan-class phytochemical. Fargesin has numerous pharmacological activities in medicine, including its effectiveness on lipid and glucose metabolism, oxidative stress, myocardial apoptosis, etc. In the present work, we have summarized the detailed scientific information of fargesin concerning its medicinal properties and pharmacological activities. Numerous biological and chemical aspects of fargesin are discussed here, including the detailed pharmacological activities and analytical aspects of fargesin. In this review, we have also compiled analytical data on fargesin based on available scientific literature. Ethnopharmacological information on fargesin was gathered by a literature survey on Pubmed, Science Direct, Google, and Scopus using the terms fargesin, Flos Magnoliae, phytochemical, and herbal medicine. The present review paper compiled the scientific data on fargesin in medicine for its pharmacological activities and analytical aspects in a very concise manner with proper citations. The present work signified the biological importance of fargesin in medicine due to its significant impact on bone disorders, lung injury, colon cancer, atherosclerosis, neurological disorders, ischemia, sars-cov-2, allergy, lipid and glucose metabolism, melanin synthesis, and different classes of enzymes. Furthermore, fargesin also has anti-inflammatory, antihypertensive, antiprotozoal, antimycobacterial, and antifeedant activity. However, analytical methods used for the separation, identification and isolation of fargesin in different biological and non-biological samples were also covered in the present review. The present work revealed the pharmacological activities and analytical aspects of fargesin in medicine and other allied health sectors.

7.
Int J Biol Macromol ; 265(Pt 2): 131025, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513895

RESUMO

Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion.


Assuntos
Quitosana , Nanotubos de Carbono , Humanos , Antibacterianos , Condutividade Elétrica , Escherichia coli , Hidrogéis/farmacologia , Polímeros
8.
Adv Sci (Weinh) ; 11(18): e2307391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447200

RESUMO

Actuators utilizing snap-through instabilities are widely investigated for high-performance fast actuators and shape reconfigurable structures owing to their rapid response and limited reliance on continuous energy input. However, prevailing approaches typically involve a combination of multiple bistable actuator units and achieving multistability within a single actuator unit still remains an open challenge. Here, a soft actuator is presented that uses shape memory alloy (SMA) and mixed-mode elastic instabilities to achieve intrinsically multistable shape reconfiguration. The multistable actuator unit consists of six stable states, including two pure bending states and four bend-twist states. The actuator is composed of a pre-stretched elastic membrane placed between two elastomeric frames embedded with SMA coils. By controlling the sequence and duration of SMA activation, the actuator is capable of rapid transition between all six stable states within hundreds of milliseconds. Principles of energy minimization are used to identify actuation sequences for various types of stable state transitions. Bending and twisting angles corresponding to various prestretch ratios are recorded based on parameterizations of the actuator's geometry. To demonstrate its application in practical conditions, the multistable actuator is used to perform visual inspection in a confined space, light source tracking during photovoltaic energy harvesting, and agile crawling.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38375842

RESUMO

BACKGROUNDS: Postbiotics produced by gut microbiota have exhibited diverse pharmacological activities. Valeric acid, a postbiotic material produced by gut microbiota and some plant species like valerian, has been explored to have diverse pharmacological activities. METHODS: This narrative review aims to summarise the beneficial role of valeric acid for different health conditions along with its underlying mechanism. In order to get ample scientific evidence, various databases like Science Direct, PubMed, Scopus, Google Scholar and Google were exhaustively explored to collect relevant information. Collected data were arranged and analyzed to reach meaningful a conclusion regarding the bioactivity profiling of valeric acid, its mechanism, and future prospects. RESULTS: Valeric acid belongs to short-chain fatty acids (SCFAs) compounds like acetate, propionate, butyrate, pentanoic (valeric) acid, and hexanoic (caproic) acid. Valeric acid has been identified as one of the potent histone deacetylase (HDAC) inhibitors. In different preclinical in -vitro and in-vivo studies, valeric acid has been found to have anti-cancer, anti-diabetic, antihypertensive, anti-inflammatory, and immunomodulatory activity and affects molecular pathways of different diseases like Alzheimer's, Parkinson's, and epilepsy. CONCLUSION: These findings highlight the role of valeric acid as a potential novel therapeutic agent for endocrine, metabolic and immunity-related health conditions, and it must be tested under clinical conditions to develop as a promising drug.

12.
Inflammopharmacology ; 32(1): 149-228, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212535

RESUMO

Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-ß, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.


Assuntos
Terapias Complementares , Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/tratamento farmacológico , Cicatrização , Citocinas/metabolismo , Inflamação
13.
Recent Adv Antiinfect Drug Discov ; 19(4): 265-275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38275071

RESUMO

BACKGROUND: Plant products derived from natural sources have been used in medicine as a raw material and newer kinds of drug molecules in pharmaceuticals and other allied health sectors. Phytochemicals have numerous medicinal potentials, including anti- ageing, anti-carcinogenic, anti-microbial, anti-oxidant, and anti-inflammatory activity in medicine. Development and biological application of herbal products in modern medicine signified the value of traditional medicinal plants in health care systems. METHODS: The objective of the present study was to explore the scientific knowledge of the medicinal importance and therapeutic potential of artemetin in medicine. However, scientific investigations for their pharmacological activities in medicine have been done through scientific data analysis of different scientific research work collected from PubMed, Google, Science Direct and Google Scholar in order to know the biological importance of artemetin in medicine. Moreover, analytical data of artemetin have also been discussed in the present work. RESULTS: The present work scientific data signified the biological potential of artemetin in medicine. Artemetin has been derived from numerous medicinal plants and dietary herbs, including Artemisia absinthium, Artemisia argyi, Achillea millefolium, and Vitex trifolia. Artemetin has anti-malarial, anti-oxidant, anti-apoptotic, anti-microbial, anti-tumoral, antiatherosclerotic, anti-inflammatory, hypotensive and hepatoprotective effects. Further, the biological role of artemetin on lipid oxidation, cytokine production, lipoxygenase, and estrogen- like effects was also investigated in the present work. Analytical data on artemetin in the present paper signified their important role in the isolation, separation, and identification of different classes of pure phytochemicals, including artemetin in medicine. CONCLUSION: Scientific data analysis of artemetin signified its therapeutic potential in medicine for the development of newer scientific approaches for different human disorders.


Assuntos
Plantas Medicinais , Humanos , Plantas Medicinais/química , Animais , Medicina Tradicional/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química
16.
Infect Disord Drug Targets ; 24(1): e201023222495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37881077

RESUMO

Plant material and their derived byproducts have been used in medicine for the treatment of human disorders and complications. Plants give us a distinct class of natural compounds, commonly called secondary metabolites and better examples are the flavonoids, phenols, terpenoids, alkaloids, tannins, and carotenoids. Plant derived phytoproducts have been used for the treatment of human disorders in both traditional as well as modern medicine. Naturally occurring aporphines and their synthetic derivatives are well known in medicine for their pharmacological activities, including an affinity for dopaminergic, adrenergic and serotonergic receptors. (+)-nantenine is an aporphine alkaloid isolated from Nandina domestica and other plants. The aim of the present study is to analyze the biological potential and therapeutic effectiveness of nantenine in medicine. In the present work scientific information of nantenine for their medicinal uses and pharmacological activities have been collected from scientific databases such as Google, Google Scholar, PubMed, Scopus, and Science Direct . Scientific information of nantenine was further analyzed to know their health beneficial aspects in medicine. However, the detail pharmacological activity of nantenine has been discussed in the present work with its analytical aspects. Scientific data analysis described the medicinal importance and pharmacological activities of nantenine. Nantenine revealed adrenergic response, behavioral response, cardiovascular effect, vasorelaxant effect, acetylcholinesterase inhibitory potential, cytotoxicity, and biphasic tracheal relaxation. Present work also signified the biological potential of nantenine for their anti-inflammatory activity, anticonvulsant effect, antiserotonergic activities, anti-MDMA effect, antileishmanial activity, effect on histamine and serotonin, human 5-hydroxytryptamine (5-HT(2A)) and h5-HT(2B) receptors and isolated tissues. Further, the analytical techniques used for the separation, isolation and identification of nantenine have also been described in this work. The present scientific data describes the therapeutic potential and pharmacological activities of (+)-nantenine in medicine.


Assuntos
Acetilcolinesterase , Aporfinas , Humanos , Aporfinas/farmacologia , Serotonina , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Adrenérgicos
19.
Cureus ; 15(10): e46622, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37936988

RESUMO

INTRODUCTION: The incorporation of a three-dimensional (3D) framework enables the surgeon to strategically plan their surgical intervention through the utilisation of the printed model. This encompasses the process of ascertaining the surgical approach, choosing the suitable reduction technique, finding the required implant dimensions, defining the ideal placement and alignment of the implant, and conducting a simulated practise of the procedure using a 3D printed duplicate of the anatomical structures. Therefore, we designed this study to evaluate the role of two imaging modalities (computed tomography (CT) and magnetic resonance imaging (MRI)) for pre-surgical planning for orthopaedic surgeries. METHODOLOGY: The present investigation entailed a prospective analysis of total knee arthroplasties (TKAs) that were performed using patient-specific instrumentation (PSI) from 2019 to 2022. After performing the bone resection operation utilising a customised cutting jig specific to each patient, the exact thickness of the resected bone was evaluated using a vernier calliper. In the MRI group, the researchers directly compared the cutting thickness during surgery with the consistency planned before the operation. In contrast, the CT group added the presumed cartilage thickness (2 mm) to the actual thickness of the bone that was removed from the lateral condyles. RESULTS:  The planned incision thickness in the distal femoral was 8.5 ± 0.8 in the CT group and 8.9 ± 0.5 in the MRI group, while the actual incision thickness was reported as 9.8 ± 0.54 in CT and 8.3 ± 1.1; however, no significant mean difference was found between both groups. The planned incision thickness was 2.6 ± 1.1 in the CT group and 2.43 ± 1.66 in the MRI group, while the actual thickness was observed as 2.5 ± 0.6 and 2.88 ± 1.12 without significant difference (p = 0.86). CONCLUSION: While magnetic resonance imaging (MRI) allows for the visualisation of cartilage, it has been observed that the MRI-based patient-specific instrumentation (PSI) system does not exhibit superior accuracy in projecting bone incision thickness compared to the computed tomography (CT)-based PSI system.

20.
Eng Res Express ; 5(3): 035071, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37881479

RESUMO

Physically soft magnetic materials (PSMMs) represent an emerging class of materials that can change shape or rheology in response to an external magnetic field. However, until now, no studies have investigated using an electropermanent magnet (EPM) and magnetic repulsion to magnetically deform PSMMs. Such capabilities would enable the ability to deform PSMMs without the need for continuous electrical input and produce PSMM film deformation without an air gap, as would be required with magnetic attraction. To address this, we introduce a PSMM-EPM architecture in which the shape of a soft deformable thin film is controlled by switching between bistable on/off states of the EPM circuit. We characterized the deflection of a PSMM thin film when placed at controlled distances normal to the surface of the EPM and compared its response for cases when the EPM is in the 'on' and 'off' states. This work is the first to demonstrate a magnetically repelled soft deformable thin film that achieves two electronically-controlled modes of deformation through the on and off states of an EPM. This work has the potential to advance the development of new magneto-responsive soft materials and systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...