Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 1051, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192519

RESUMO

Glaucoma is a leading cause of blindness. Current glaucoma medications work by lowering intraocular pressure (IOP), a risk factor for glaucoma, but most treatments do not directly target the pathological changes leading to increased IOP, which can manifest as medication resistance as disease progresses. To identify physiological modulators of IOP, we performed genome- and exome-wide association analysis in >129,000 individuals with IOP measurements and extended these findings to an analysis of glaucoma risk. We report the identification and functional characterization of rare coding variants (including loss-of-function variants) in ANGPTL7 associated with reduction in IOP and glaucoma protection. We validated the human genetics findings in mice by establishing that Angptl7 knockout mice have lower (~2 mmHg) basal IOP compared to wild-type, with a trend towards lower IOP also in heterozygotes. Conversely, increasing murine Angptl7 levels via injection into mouse eyes increases the IOP. We also show that acute Angptl7 silencing in adult mice lowers the IOP (~2-4 mmHg), reproducing the observations in knockout mice. Collectively, our data suggest that ANGPTL7 is important for IOP homeostasis and is amenable to therapeutic modulation to help maintain a healthy IOP that can prevent onset or slow the progression of glaucoma.


Assuntos
Glaucoma , Pressão Intraocular , Adulto , Proteína 7 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Animais , Cegueira , Glaucoma/tratamento farmacológico , Glaucoma/genética , Humanos , Camundongos , Camundongos Knockout
2.
Invest Ophthalmol Vis Sci ; 63(2): 12, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129590

RESUMO

Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.


Assuntos
Humor Aquoso/fisiologia , Consenso , Glaucoma/metabolismo , Pressão Intraocular/fisiologia , Hipertensão Ocular/metabolismo , Malha Trabecular/metabolismo , Animais , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Camundongos , Hipertensão Ocular/fisiopatologia , Tonometria Ocular
3.
Expert Rev Ophthalmol ; 15(3): 145-157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-38274668

RESUMO

Introduction: Glucocorticoids (GCs) have unique actions in their combined anti-inflammatory and immunosuppressive activities and are among the most commonly-prescribed drugs, particularly for inflammatory conditions. They are often used clinically to treat inflammatory eye diseases like uveitis, optic neuritis, conjunctivitis, keratitis and others, but are often accompanied by side effects, like ocular hypertension that can be vision threatening. Areas covered: The review will focus on the complex molecular mechanism of action of GCs that involve both transactivation and transrepression and their use therapeutically that can cause significant systemic side effects, particularly ocular hypertension that can lead to glaucoma. Expert Opinion: While we are still unclear as to all the mechanisms responsible for GC-induced ocular hypertension, however, there are potential novel therapies that are in development that can separate some of the anti-inflammatory therapeutic efficacy from their ocular hypertension side effect. This review provides some insight into these approaches.

4.
Invest Ophthalmol Vis Sci ; 60(6): 1967-1978, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050723

RESUMO

Purpose: Glucocorticoid (GC)-induced ocular hypertension (GC-OHT) is a serious side effect of prolonged GC therapy that can lead to glaucoma and permanent vision loss. GCs cause a plethora of changes in the trabecular meshwork (TM), an ocular tissue that regulates intraocular pressure (IOP). GCs act through the glucocorticoid receptor (GR), and the GR regulates transcription both through transactivation and transrepression. Many of the anti-inflammatory properties of GCs are mediated by GR transrepression, while GR transactivation largely accounts for GC metabolic effects and side effects of GC therapy. There is no evidence showing which of the two mechanisms plays a role in GC-OHT. Methods: GRdim transgenic mice (which have active transrepression and impaired transactivation) and wild-type (WT) C57BL/6J mice received weekly periocular dexamethasone acetate (DEX-Ac) injections. IOP, outflow facilities, and biochemical changes to the TM were determined. Results: GRdim mice did not develop GC-OHT after continued DEX treatment, while WT mice had significantly increased IOP and decreased outflow facilities. Both TM tissue in eyes of DEX-treated GRdim mice and cultured TM cells isolated from GRdim mice had reduced or no change in the expression of fibronectin, myocilin, collagen type I, and α-smooth muscle actin (α-SMA). GRdim mouse TM (MTM) cells also had a significant reduction in DEX-induced cytoskeletal changes, which was clearly seen in WT MTM cells. Conclusions: We provide the first evidence for the role of GR transactivation in regulating GC-mediated gene expression in the TM and in the development of GC-OHT. This discovery suggests a novel therapeutic approach for treating ocular inflammation without causing GC-OHT and glaucoma.


Assuntos
Regulação da Expressão Gênica , Glaucoma/genética , Glucocorticoides/efeitos adversos , Hipertensão Ocular/genética , RNA/genética , Receptores de Glucocorticoides/genética , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Feminino , Glaucoma/induzido quimicamente , Glaucoma/metabolismo , Imuno-Histoquímica , Pressão Intraocular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hipertensão Ocular/induzido quimicamente , Hipertensão Ocular/metabolismo , Receptores de Glucocorticoides/biossíntese , Ativação Transcricional
5.
Exp Eye Res ; 176: 188-195, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30006274

RESUMO

Optic nerve astrocytes play a major role in axonal degeneration and regeneration. Astrocyte lines are an important tool to elucidate the responsible cellular mechanisms. In this study, we established a conditionally immortalized mouse optic nerve astrocyte line. Astrocytes were cultured from explants derived from postnatal day 4-5 H-2kb-tsA58 transgenic mouse optic nerves. Cells were cultured in defined astrocyte culture medium under permissive (33 °C) or non-permissive (38.5 °C) temperatures with or without interferon-ɤ (IFN-ɤ). Astrocytes were characterized by immunocytochemistry staining using antibodies against glial fibrillary acidic protein (GFAP) and neural cell adhesion molecule (NCAM). Cell proliferation rates were determined by cell growth curves and percentage of Ki67 positive cells. Karyotyping was performed to validate the mouse origin of established cell line. Conditional immortalization was assessed by western blot-determined expression levels of SV40 large T antigen (TAg), p53, GFAP and NCAM in non-permissive culture conditions. In addition, phagocytic activity of immortalized cells was determined by flow cytometry-based pHrodo fluorescence analysis. After 5 days in culture, cells migrated out from optic nerve explants. Immunocytochemistry staining showed that migrating cells expressed astrocyte makers, GFAP and NCAM. In permissive conditions, astrocytes had increased expression levels of TAg and p53, exhibited a greater cell proliferation rate as well as a higher percentage of Ki67 positive cells (n = 3, p < 0.05) compared to cells cultured in non-permissive conditions. One cell line (ImB1ON) was further maintained through 60 generations. Karyotyping showed that ImB1ON was of mouse origin. Flow cytometry-based pHrodo fluorescence analysis demonstrated phagocytic activity of ImB1ON cells. Quantitative PCR showed mRNA expression of trophic factors. Non-permissive culture conditions decreased expression of TAg and p53 in ImB1ON, and increased the expression of NCAM. A conditionally immortalized mouse optic nerve astrocyte line was established. This cell line provides an important tool to study astrocyte biological processes.


Assuntos
Astrócitos/citologia , Nervo Óptico/citologia , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Astrócitos/metabolismo , Western Blotting , Antígeno CD56/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células/fisiologia , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Cariotipagem , Camundongos , Camundongos Transgênicos , Nervo Óptico/metabolismo , Fagocitose , Proteína Supressora de Tumor p53/metabolismo
6.
Sci Rep ; 8(1): 862, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339763

RESUMO

Prolonged glucocorticoid (GC) therapy can cause GC-induced ocular hypertension (OHT), which if left untreated progresses to iatrogenic glaucoma and permanent vision loss. The alternatively spliced isoform of glucocorticoid receptor GRß acts as dominant negative regulator of GR activity, and it has been shown that overexpressing GRß in trabecular meshwork (TM) cells inhibits GC-induced glaucomatous damage in TM cells. The purpose of this study was to use viral vectors to selectively overexpress the GRß isoform in the TM of mouse eyes treated with GCs, to precisely dissect the role of GRß in regulating steroid responsiveness. We show that overexpression of GRß inhibits GC effects on MTM cells in vitro and GC-induced OHT in mouse eyes in vivo. Ad5 mediated GRß overexpression reduced the GC induction of fibronectin, collagen 1, and myocilin in TM of mouse eyes both in vitro and in vivo. GRß also reversed DEX-Ac induced IOP elevation, which correlated with increased conventional aqueous humor outflow facility. Thus, GRß overexpression reduces effects caused by GCs and makes cells more resistant to GC treatment. In conclusion, our current work provides the first evidence of the in vivo physiological role of GRß in regulating GC-OHT and GC-mediated gene expression in the TM.


Assuntos
Glucocorticoides/farmacologia , Pressão Intraocular/efeitos dos fármacos , Hipertensão Ocular/etiologia , Receptores de Glucocorticoides/metabolismo , Animais , Colágeno Tipo I/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dexametasona/farmacologia , Proteínas do Olho/metabolismo , Feminino , Fibronectinas/metabolismo , Vetores Genéticos/metabolismo , Glicoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hipertensão Ocular/metabolismo , Hipertensão Ocular/patologia , Receptores de Glucocorticoides/genética , Malha Trabecular/citologia , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo
7.
Exp Eye Res ; 164: 95-108, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28822760

RESUMO

Mice are now routinely utilized in studies of aqueous humor outflow dynamics. In particular, conventional aqueous outflow facility (C) is routinely measured via perfusion of the aqueous chamber by a number of laboratories. However, in mouse eyes perfused ex-vivo, values for C are variable depending upon whether the perfusate is introduced into the posterior chamber (PC) versus the anterior chamber (AC). Perfusion via the AC leads to posterior bowing of the iris, and traction on the iris root/scleral spur, which may increase C. Perfusion via the PC does not yield this effect. But the equivalent situation in living mice has not been investigated. We sought to determine whether AC versus PC perfusion of the living mouse eye may lead to different values for C. All experiments were conducted in C57BL/6J mice (all ♀) between the ages of 20 and 30 weeks. Mice were divided into groups of 3-4 animals each. In all groups, both eyes were perfused. C was measured in groups 1 and 2 by constant flow infusion (from a 50 µL microsyringe) via needle placement in the AC, and in the PC, respectively. To investigate the effect of ciliary muscle (CM) tone on C, groups 3 and 4 were perfused live via the AC or PC with tropicamide (muscarinic receptor antagonist) added to the perfusate at a concentration of 100 µM. To investigate immediate effect of euthanasia, groups 5 and 6 were perfused 15-30 min after death via the AC or PC. To investigate the effect of CM tone on C immediately following euthanasia, groups 7 and 8 were perfused 15-30 min after death via the AC or PC with tropicamide added to the perfusate at a concentration of 100 µM. C in Groups 1 (AC perfusion) and 2 (PC perfusion) was computed to be 19.5 ± 0.8 versus 21.0 ± 2.1 nL/min/mmHg, respectively (mean ± SEM, p > 0.4, not significantly different). In live animals in which tropicamide was present in the perfusate, C in Group 3 (AC perfusion) was significantly greater than C in Group 4 (PC perfusion) (22.0 ± 4.0 versus 14.0 ± 2.0 nL/min/mmHg, respectively, p = 0.0021). In animals immediately following death, C in groups 5 (AC perfusion) and 6 (PC perfusion) was computed to be 21.2 ± 2.0 versus 22.8 ± 1.4 nL/min/mmHg, respectively (mean ± SEM, p = 0.1196, not significantly different). In dead animals in which tropicamide was present in the perfusate, C in group 7 (AC perfusion) was greater than C in group 8 (PC perfusion) (20.6 ± 1.4 versus 14.2 ± 2.6 nL/min/mmHg, respectively, p < 0.0001). C in eyes in situ in living mice or euthanized animals within 15-30 min post mortem is not significantly different when measured via AC perfusion or PC perfusion. In eyes of live or freshly euthanized mice, C is greater when measured via AC versus PC perfusion when tropicamide (a mydriatic and cycloplegic agent) is present in the perfusate.


Assuntos
Câmara Anterior/fisiologia , Humor Aquoso/fisiologia , Pressão Intraocular/fisiologia , Segmento Posterior do Olho/fisiologia , Animais , Câmara Anterior/efeitos dos fármacos , Câmara Anterior/metabolismo , Humor Aquoso/metabolismo , Modelos Animais de Doenças , Feminino , Pressão Intraocular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas Muscarínicos/farmacologia , Segmento Posterior do Olho/efeitos dos fármacos , Segmento Posterior do Olho/metabolismo , Malha Trabecular/metabolismo , Tropicamida/farmacologia
8.
Invest Ophthalmol Vis Sci ; 58(2): 1288-1295, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28241317

RESUMO

Purpose: Increased intraocular pressure results from increased aqueous humor (AH) outflow resistance at the trabecular meshwork (TM) due to pathologic changes including the formation of cross-linked actin networks (CLANs). Transforming growth factor ß2 (TGFß2) is elevated in the AH and TM of primary open angle glaucoma (POAG) patients and induces POAG-associated TM changes, including CLANs. We determined the role of individual TGFß2 signaling pathways in CLAN formation. Methods: Cultured nonglaucomatous human TM (NTM) cells were treated with control or TGFß2, with or without the inhibitors of TGFß receptor, Smad3, c-Jun N-terminal kinases (JNK), extracellular signal regulated kinase (ERK), P38, or Rho-associated protein kinase (ROCK). NTM cells were cotreated with TGFß2 plus inhibitors for 10 days or pretreated with TGFß2 for 10 days followed by 1-hour inhibitor treatment. NTM cells were immunostained with phalloidin-Alexa-488 and 4',6-diamidino-2-phenylindole (DAPI). Data were analyzed using 1-way ANOVA and Dunnett's post hoc test. Results: TGFß2 significantly induced CLAN formation (n = 6 to 12, P < 0.05), which was completely inhibited by TGFß receptor, Smad3, and ERK inhibitors, as well as completely or partially inhibited by JNK, P38, and ROCK inhibitors, depending on cell strains. One-hour exposure to ROCK inhibitor completely resolved formed CLANs (P < 0.05), whereas TGFß receptor, Smad3 inhibitor, and ERK inhibitors resulted in partial or complete resolution. The JNK and P38 inhibitors showed partial or no resolution. Among these inhibitors, the ROCK inhibitor was the most disruptive to the actin stress fibers, whereas ERK inhibition showed the least disruption. Conclusions: TGFß2-induced CLANs in NTM cells were prevented and resolved using various pathway inhibitors. Apart from CLAN inhibition, some of these inhibitors also had different effects on actin stress fibers.


Assuntos
Actinas/metabolismo , Proteína Smad3/metabolismo , Malha Trabecular/efeitos dos fármacos , Fator de Crescimento Transformador beta2/farmacologia , Análise de Variância , Humor Aquoso/metabolismo , Western Blotting , Células Cultivadas , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta , Transdução de Sinais/fisiologia , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta2/antagonistas & inibidores , Fator de Crescimento Transformador beta2/fisiologia
9.
Am J Pathol ; 187(4): 713-723, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28167045

RESUMO

Glucocorticoid (GC)-induced ocular hypertension (OHT) is a serious adverse effect of prolonged GC therapy that can lead to iatrogenic glaucoma and permanent vision loss. An appropriate mouse model can help us understand precise molecular mechanisms and etiology of GC-induced OHT. We therefore developed a novel, simple, and reproducible mouse model of GC-induced OHT. GC-induced myocilin expression in the trabecular meshwork (TM) has been suggested to play an important role in GC-induced OHT. We further determined whether myocilin contributes to GC-OHT. C57BL/6J mice received weekly periocular conjunctival fornix injections of a dexamethasone-21-acetate (DEX-Ac) formulation. Intraocular pressure (IOP) elevation was relatively rapid and significant, and correlated with reduced conventional outflow facility. Nighttime IOPs were higher in ocular hypertensive eyes compared to daytime IOPs. DEX-Ac treatment led to increased expression of fibronectin, collagen I, and α-smooth muscle actin in the TM in mouse eyes. No changes in body weight indicated no systemic toxicity associated with DEX-Ac treatment. Wild-type mice showed increased myocilin expression in the TM on DEX-Ac treatment. Both wild-type and Myoc-/- mice had equivalent and significantly elevated IOP with DEX-Ac treatment every week. In conclusion, our mouse model mimics many aspects of GC-induced OHT in humans, and we further demonstrate that myocilin does not play a major role in DEX-induced OHT in mice.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Dexametasona/análogos & derivados , Proteínas do Olho/metabolismo , Glicoproteínas/metabolismo , Hipertensão Ocular/induzido quimicamente , Anestesia , Animais , Peso Corporal/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Vias de Administração de Medicamentos , Esquema de Medicação , Feminino , Fibronectinas/metabolismo , Injeções , Injeções Intraoculares , Pressão Intraocular , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipertensão Ocular/fisiopatologia , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/patologia
10.
Invest Ophthalmol Vis Sci ; 57(8): 3698-707, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27403998

RESUMO

PURPOSE: Elevated intraocular pressure (IOP) in primary open-angle glaucoma (POAG) results from glaucomatous damage to the trabecular meshwork (TM). The glaucoma-associated factor TGFß2 is increased in aqueous humor and TM of POAG patients. We hypothesize that histone acetylation has a role in dysregulated TGFß2 expression. METHODS: Protein acetylation was compared between nonglaucomatous TM (NTM) and glaucomatous TM (GTM) cells using Western immunoblotting (WB). Nonglaucomatous TM cells were treated with 10 nM thailandepsin-A (TDP-A), a potent histone deacetylase inhibitor for 4 days. Total and nuclear proteins, RNA, and nuclear protein-DNA complexes were harvested for WB, quantitative PCR (qPCR), and chromatin immunoprecipitation (ChIP) assays, respectively. Paired bovine eyes were perfused with TDP-A versus DMSO, or TDP-A versus TDP-A plus the TGFß pathway inhibitor LY364947 for 5 to 9 days. Intraocular pressure, TM, and perfusate proteins were compared. RESULTS: We found increased acetylated histone 3 and total protein acetylation in the GTM cells and TDP-A treated NTM cells. Chromatin immunoprecipitation assays showed that TDP-A induced histone hyperacetylation associated with the TGFß2 promoter. This change of acetylation significantly increased TGFß2 mRNA and protein expression in NTM cells. In perfusion-cultured bovine eyes, TDP-A increased TGFß2 in the perfusate as well as elevated IOP. Histologic and immunofluorescent analyses showed increased extracellular matrix and cytoskeletal proteins in the TM of TDP-A treated bovine eyes. Cotreatment with the TGFß pathway inhibitor LY364947 blocked TDP-A-induced ocular hypertension. CONCLUSIONS: Our results suggest that histone acetylation has an important role in increased expression of the glaucoma-associated factor TGFß2. Histone hyperacetylation may be the initiator of glaucomatous damage to the TM.


Assuntos
Epigênese Genética/genética , Glaucoma de Ângulo Aberto/genética , Inibidores de Histona Desacetilases/farmacologia , Malha Trabecular/fisiologia , Fator de Crescimento Transformador beta2/genética , Acetilação , Animais , Bovinos , Células Cultivadas , Pirazóis/farmacologia , Pirróis/farmacologia , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...