Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 479(15): 1609-1619, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35851603

RESUMO

Human BK channels are large voltage and Ca2+-activated K+ channels, involved in several important functions within the body. The core channel is a tetramer of α subunits, and its function is modulated by the presence of ß and γ accessory subunits. BK channels composed of α subunits, as well as BK channels composed of α and ß1 subunits, were successfully solubilised from HEK cells with styrene maleic acid (SMA) polymer and purified by nickel affinity chromatography. Native SMA-PAGE analysis of the purified proteins showed the α subunits were extracted as a tetramer. In the presence of ß1 subunits, they were co-extracted with the α subunits as a heteromeric complex. Purified SMA lipid particles (SMALPs) containing BK channel could be inserted into planar lipid bilayers (PLB) and single channel currents recorded, showing a high conductance (≈260 pS), as expected. The open probability was increased in the presence of co-purified ß1 subunits. However, voltage-dependent gating of the channel was restricted. In conclusion, we have demonstrated that SMA can be used to effectively extract and purify large, complex, human ion channels, from low expressing sources. That these large channels can be incorporated into PLB from SMALPs and display voltage-dependent channel activity. However, the SMA appears to reduce the voltage dependent gating of the channels.


Assuntos
Ativação do Canal Iônico , Canais de Potássio Ativados por Cálcio de Condutância Alta , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo
2.
Protein Expr Purif ; 167: 105524, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31678667

RESUMO

Given their extensive role in cell signalling, GPCRs are significant drug targets; despite this, many of these receptors have limited or no available prophylaxis. Novel drug design and discovery significantly rely on structure determination, of which GPCRs are typically elusive. Progress has been made thus far to produce sufficient quantity and quality of protein for downstream analysis. As such, this review highlights the systems available for recombinant GPCR expression, with consideration of their advantages and disadvantages, as well as examples of receptors successfully expressed in these systems. Additionally, an overview is given on the use of detergents and the styrene maleic acid (SMA) co-polymer for membrane solubilisation, as well as purification techniques.


Assuntos
Receptores Acoplados a Proteínas G/biossíntese , Animais , Linhagem Celular , Clonagem Molecular , Drosophila melanogaster , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Expressão Gênica , Maleatos/química , Poliestirenos/química , Receptores Acoplados a Proteínas G/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Solubilidade
3.
Biochim Biophys Acta Biomembr ; 1860(4): 809-817, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28865797

RESUMO

New technologies for the purification of stable membrane proteins have emerged in recent years, in particular methods that allow the preparation of membrane proteins with their native lipid environment. Here, we look at the progress achieved with the use of styrene-maleic acid copolymers (SMA) which are able to insert into biological membranes forming nanoparticles containing membrane proteins and lipids. This technology can be applied to membrane proteins from any host source, and, uniquely, allows purification without the protein ever being removed from a lipid bilayer. Not only do these SMA lipid particles (SMALPs) stabilise membrane proteins, allowing structural and functional studies, but they also offer opportunities to understand the local lipid environment of the host membrane. With any new or different method, questions inevitably arise about the integrity of the protein purified: does it retain its activity; its native structure; and ability to perform its function? How do membrane proteins within SMALPS perform in existing assays and lend themselves to analysis by established methods? We outline here recent work on the structure and function of membrane proteins that have been encapsulated like this in a polymer-bound lipid bilayer, and the potential for the future with this approach. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Polímeros/química , Bicamadas Lipídicas/metabolismo , Maleatos/química , Maleatos/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Polímeros/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Estirenos/química , Estirenos/metabolismo
4.
Biochem J ; 473(23): 4349-4360, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27694389

RESUMO

The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications.


Assuntos
Maleatos/química , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Poliestirenos/química , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA