Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 79(2): 331-40, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18339649

RESUMO

AIMS: Heart failure is associated with decreased myocardial fatty acid oxidation capacity and has been likened to energy starvation. Increased fatty acid availability results in an induction of genes promoting fatty acid oxidation. The aim of the present study was to investigate possible mechanisms by which high fat feeding improved mitochondrial and contractile function in heart failure. METHODS AND RESULTS: Male Wistar rats underwent coronary artery ligation (HF) or sham surgery and were immediately fed either a normal (14% kcal fat) (SHAM, HF) or high-fat diet (60% kcal saturated fat) (SHAM+FAT, HF+FAT) for 8 weeks. Mitochondrial respiration and gene expression and enzyme activities of fatty acid-regulated mitochondrial genes and proteins were assessed. Subsarcolemmal (SSM) and interfibrillar mitochondria were isolated from the left ventricle. State 3 respiration using lipid substrates octanoylcarnitine and palmitoylcarnitine increased in the SSM of HF+FAT compared with SHAM+FAT and HF, respectively (242 +/- 21, 246 +/- 21 vs. 183 +/- 8, 181 +/- 6 and 193 +/- 17, 185 +/- 16 nAO min(-1) mg(-1)). Despite decreased medium-chain acyl-CoA dehydrogenase (MCAD) mRNA in HF and HF+FAT, MCAD protein was not altered, and MCAD activity increased in HF+FAT (HF, 65.1 +/- 2.7 vs. HF+FAT, 81.5 +/- 5.4 nmoles min(-1) mg(-1)). Activities of short- and long-chain acyl-CoA dehydrogenase also were elevated and correlated to increased state 3 respiration. This was associated with an improvement in myocardial contractility as assessed by left ventricular +dP/dt max. CONCLUSION: Administration of a high-fat diet increased state 3 respiration and acyl-CoA dehydrogenase activities, but did not normalize mRNA or protein levels of acyl-CoA dehydrogenases in coronary artery ligation-induced heart failure rats.


Assuntos
Acil-CoA Desidrogenase/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica/fisiologia , Adiponectina/metabolismo , Animais , Glicemia/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Masculino , Contração Miocárdica/efeitos dos fármacos , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 292(3): H1498-506, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17114240

RESUMO

Lipid accumulation in nonadipose tissue due to enhanced circulating fatty acids may play a role in the pathophysiology of heart failure, obesity, and diabetes. Accumulation of myocardial lipids and related intermediates, e.g., ceramide, is associated with decreased contractile function, mitochondrial oxidative phosphorylation, and electron transport chain (ETC) complex activities. We tested the hypothesis that the progression of heart failure would be exacerbated by elevated myocardial lipids and an associated ceramide-induced inhibition of mitochondrial oxidative phosphorylation and ETC complex activities. Heart failure (HF) was induced by coronary artery ligation. Rats were then randomly assigned to either a normal (10% kcal from fat; HF, n = 8) or high saturated fat diet (60% kcal from saturated fat; HF + Sat, n = 7). Sham-operated animals (sham; n = 8) were fed a normal diet. Eight weeks postligation, left ventricular (LV) function was assessed by echocardiography and catheterization. Subsarcolemmal and interfibrillar mitochondria were isolated from the LV. Heart failure resulted in impaired LV contractile function [decreased percent fractional shortening and peak rate of LV pressure rise and fall (+/-dP/dt)] and remodeling (increased end-diastolic and end-systolic dimensions) in HF compared with sham. No further progression of LV dysfunction was evident in HF + Sat. Mitochondrial state 3 respiration was increased in HF + Sat compared with HF despite elevated myocardial ceramide. Activities of ETC complexes II and IV were elevated in HF + Sat compared with HF and sham. High saturated fat feeding following coronary artery ligation was associated with increased oxidative phosphorylation and ETC complex activities and did not adversely affect LV contractile function or remodeling, despite elevations in myocardial ceramide.


Assuntos
Gorduras na Dieta , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/fisiopatologia , Função Ventricular Esquerda/fisiologia , Animais , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Transporte de Elétrons , Mitocôndrias Cardíacas/efeitos dos fármacos , Fosforilação Oxidativa , Ratos , Disfunção Ventricular Esquerda/fisiopatologia
3.
Biochemistry ; 44(23): 8449-60, 2005 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-15938634

RESUMO

CXCL10 (also known as IP-10 in humans and CRG-2 in mice) is a nonglycosylated chemokine and a member of the non-ELR CXC chemokine subfamily implicated in a variety of inflammatory conditions. The role of CXCL10 in different disease states still requires clarification, and new approaches are necessary to better understand its biological function. We report here the isolation of a series of nuclease-resistant RNA aptamers that act to antagonize human CXCL10 function in a number of in vitro and cell-based assays. The two most potent aptamers identified were highly selective for human CXCL10. A further aptamer was identified that antagonized both the human and the mouse CXCL10. A combination of a molecular-biology-based truncation and solid-phase synthesis enabled the truncation of one of the aptamers from 71 to 34 nucleotides. This was followed by PEGylation, 3' capping, and further stabilization of the RNA aptamer, while its high potency was maintained. These aptamers could be utilized as powerful target validation tools and may also have therapeutic potential. To our knowledge, the CXCL10 aptamers generated are the most potent antagonists of CXCL10/CXCR3 signaling reported to date.


Assuntos
Inibição de Migração Celular , Quimiocinas CXC/antagonistas & inibidores , Quimiocinas CXC/biossíntese , Interferon gama/fisiologia , RNA/química , Animais , Sequência de Bases , Sítios de Ligação/genética , Células CHO , Linhagem Celular Tumoral , Quimiocina CXCL10 , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Cricetinae , Humanos , Ligantes , Camundongos , Dados de Sequência Molecular , Polietilenoglicóis/química , RNA/síntese química , RNA/isolamento & purificação , RNA/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Receptores CXCR3 , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/biossíntese , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA