Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(36): 25107-25117, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39190644

RESUMO

Eutectic gallium-indium (EGaIn), a room-temperature liquid metal, has garnered significant attention for its applications in soft electronics, multifunctional materials, energy engineering and drug delivery. A key factor influencing these diverse applications is the spontaneous formation of a native passivating oxide shell that not only encapsulates the liquid metal but also alters the properties from the bulk counterpart. Using environmental scanning transmission electron microscopy, we report in situ observations of the oxidation of EGaIn nanoparticles by ambient air under high-energy electron beam irradiation. Our findings demonstrate that uneven oxide shell growth, driven by inward diffusion of adsorbed O species, creates unbalanced stresses. This compels the liquid metal to deform toward regions with slower oxide growth, resulting in shell rupture and allowing the liquid metal core to flow out. This process initiates top-down self-similar replication of the core-shell liquid metal nanoparticles, causing larger particles to break down into smaller particles. Additionally, internal oxidation triggers phase separation within the liquid core, ultimately leading to the pulverization of the liquid metal into finer solid particles rich in indium. These mechanistic insights into the oxidation behavior of the liquid metal hold practical implications for leveraging this process to reconfigure EGaIn nanoparticles for various applications.

2.
Sci Adv ; 9(44): eadh5565, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910618

RESUMO

The microscopic mechanisms underpinning the spontaneous surface passivation of metals from ubiquitous water have remained largely elusive. Here, using in situ environmental electron microscopy to atomically monitor the reaction dynamics between aluminum surfaces and water vapor, we provide direct experimental evidence that the surface passivation results in a bilayer oxide film consisting of a crystalline-like Al(OH)3 top layer and an inner layer of amorphous Al2O3. The Al(OH)3 layer maintains a constant thickness of ~5.0 Å, while the inner Al2O3 layer grows at the Al2O3/Al interface to a limiting thickness. On the basis of experimental data and atomistic modeling, we show the tunability of the dissociation pathways of H2O molecules with the Al, Al2O3, and Al(OH)3 surface terminations. The fundamental insights may have practical significance for the design of materials and reactions for two seemingly disparate but fundamentally related disciplines of surface passivation and catalytic H2 production from water.

3.
Proc Natl Acad Sci U S A ; 120(13): e2215189120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943886

RESUMO

The Mars-van Krevelen mechanism is the foundation for oxide-catalyzed oxidation reactions and relies on spatiotemporally separated redox steps. Herein, we demonstrate the tunability of this separation with peroxide species formed by excessively adsorbed oxygen, thereby modifying the catalytic activity and selectivity of the oxide. Using CuO as an example, we show that a surface layer of peroxide species acts as a promotor to significantly enhance CuO reducibility in favor of H2 oxidation but conversely as an inhibitor to suppress CuO reduction against CO oxidation. Together with atomistic modeling, we identify that this opposite effect of the peroxide on the two oxidation reactions stems from its modification on coordinately unsaturated sites of the oxide surface. By differentiating the chemical functionality between lattice oxygen and peroxide, these results are closely relevant to a wide range of catalytic oxidation reactions using excessively adsorbed oxygen to activate lattice oxygen and tune the activity and selectivity of redox sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA