Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 13(7): 247, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37366498

RESUMO

Phycobiliproteins is a family of chromophore-containing proteins having light-harvesting and antioxidant capacity. The phycocyanin (PC) is a brilliant blue coloured phycobiliprotein, found in rod structure of phycobilisome and has been widely studied for their therapeutic and fluorescent properties. In the present study, the hexameric assembly structure of phycocyanin (Syn-PC) from Synechococcus Sp. R42DM is characterized by X-ray crystallography to understand its light-harvesting and antioxidant properties. The crystal structure of Syn-PC is solved with 2.15 Å resolution and crystallographic R-factors, Rwork/Rfree, 0.16/0.21. The hexamer of Syn-PC is formed by heterodimer of two polypeptide chains, namely, α- and ß-subunits. The structure is analysed at atomic level to reveal the chromophore microenvironment and possible light energy transfer mechanism in Syn-PC. The chromophore arrangement in hexamer, deviation angle and distance between the chromophore contribute to the energy transfer efficiency of protein. The structural attributes responsible for the antioxidant potential of Syn-PC are recognized and annotated on its 3-dimensional structure. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03665-1.

2.
J Biomol Struct Dyn ; 41(9): 3752-3761, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35354393

RESUMO

Phycoerythrin (PE) is green light-absorbing pigment-protein that assists in efficient light harvesting in cyanobacteria and red-algae. PE in cyanobacteria stays less studied so far as compared to that in red algae. In this study, PE from marine cyanobacteria Halomicronema sp. R31DM is purified and subjected for its structural characterisation by X-ray crystallography in order to understand its light-harvesting characteristics. The crystal structure is solved to a resolution-limit of 2.21 Å with reasonable R-factors values, 0.16/0.21 (Rwork/ Rfree). PE forms hexamer of hetero-dimers made up of two peptide chains, α- and ß-subunits containing 2 and 3 phycoerythrobilin (PEB) chromophores covalently attached to them, respectively. Geometry of five chromophores is analysed along with their relative position within the PE hexamer. Also, their interactions with the surrounding microenvironment are analysed. The plausible energy transfer pathways in hexamer structure have been predicted based on relative position and geometry of chromophores. This structure enriches the structural information of cyanobacterial PE in order to understand its light-harvesting capacity.Communicated by Ramaswamy H. Sarma.


Assuntos
Cianobactérias , Ficoeritrina , Ficoeritrina/química , Ficoeritrina/metabolismo , Cianobactérias/química , Cianobactérias/metabolismo , Cristalografia por Raios X , Peptídeos/metabolismo
3.
3 Biotech ; 12(9): 224, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35975025

RESUMO

Phycobiliproteins (PBPs) of cyanobacteria and algae possess unique light harvesting capacity which expand the photosynthetically active region (PAR) and allow them to thrive in extreme niches where higher plants cannot. PBPs of cyanobacteria/algae vary in abundance, types, amino acid composition and in structure as a function of species and the habitat that they grow in. In the present review, the key aspects of structure, stability, and spectral properties of PBPs, and their correlation with ecological niche of cyanobacteria are discussed. Besides their role in light-harvesting, PBPs possess antioxidant, anti-aging, neuroprotective, hepatoprotective and anti-inflammatory properties, which can be used in therapeutics. Recent developments in therapeutic applications of PBPs are reviewed with special focus on 'route of PBPs administration' and 'therapeutic potential of PBP-derived peptide and chromophores'.

4.
EXCLI J ; 20: 80-98, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510593

RESUMO

Some natural fruits have significant importance in improving health which provides many nutritional supplements essential to maintain proper metabolism with the age. In this study, phytochemical screening of extract (methanolic) of Punica granatum arils, outer and inner peels was confirmed by the respective spot tests. Quantification of phytochemical constituents revealed the plentiful of total phenols in the outer peels in comparison to inner peels and juice whereas total flavonoids and vitamin C are abundant in inner peel and juice, respectively. High-performance liquid chromatography, Gas chromatography along with mass spectrometry and Fourier-transform infrared spectroscopy analysis revealed the presence of compound 9, 17-octadecadienal, (Z) in the outer/inner peels. A compound N-hexadecanoic acid was also observed in the outer peels. Extracts from every section of the fruits were comprehensively evaluated for their antioxidant activity. Contrary to fruit aril juice, the extracts of outer and inner peels exhibited significant and dose-dependent in vitro antioxidant and radical-scavenging potentials. The supplementation of P. granatum extracts (PGEs) significantly enhanced the lifespan of C. elegans. The protective effect of PGEs was also observed against oxidative stress in C. elegans. Additionally, the involvement of FOXO orthologue DAF-16 dependent longevity was obtained with PGEs (outer peel and inner peel) fed TJ356 worms. Overall, the results indicate the vital role of PGEs especially the extracts of outer peels in life-saving mechanisms of C. elegans by virtue of their antioxidant asset and life-prolonging effects via daf-16 dependent Insulin signaling pathway. See also Figure 1(Fig. 1).

5.
Int J Biol Macromol ; 111: 359-369, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29307804

RESUMO

In the present study, blue light absorbing pigment protein phycoerythrin (PE) is purified up to molecular grade purity from marine Halomicronema sp. R31DM. The purification method is based on the use of non-ionic detergent Triton-X 100 in ammonium sulphate precipitation. The purified PE is characterized for its antioxidant activity in vitro and in vivo. PE is noted to show substantial in vitro antioxidant activity probed by various biochemical assays. The PE moderated rise in the intracellular-ROS (reactive oxygen species) in wild type Caenorhabditis elegans upon heat and oxidative stress. Further, the antioxidant asset of PE is noted an expedient in averting the ROS associated abnormalities, i.e. impaired physiological behaviour (health span) and aging in C. elegans. The structural attributes of PE contributing to its antioxidant virtue are analysed; the presence of ample residues having antioxidant activity and chromophore-PEB in PE are identified as a source of its antioxidant activity. Furthermore, the stability of PE is assessed under three physico-chemical stresses, temperature, pH and oxidative stress.


Assuntos
Antioxidantes/química , Caenorhabditis elegans/efeitos dos fármacos , Halobacteriaceae/química , Ficoeritrina/química , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Caenorhabditis elegans/crescimento & desenvolvimento , Temperatura Alta , Concentração de Íons de Hidrogênio , Estresse Oxidativo/efeitos dos fármacos , Ficoeritrina/isolamento & purificação , Ficoeritrina/farmacologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA