Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(7): 3962-3971, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34506101

RESUMO

The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native substructure upon polymerization introduces challenges that are not easily amenable with off-the-shelf instrumentation. To overcome these challenges, we have designed a platform that simultaneously aligns type I COL fibrils under mild shear flow and builds up the material through layer-by-layer assembly. We explored the mechanisms propagating fibril alignment, targeting experimental variables such as shear rate, viscosity, and time. Coarse-grained molecular dynamics simulations were also employed to help understand how initial reaction conditions including chain length, indicative of initial polymerization, and chain density, indicative of concentration, in the reaction environment impact fibril growth and alignment. When taken together, the mechanistic insights gleaned from these studies inspired the design, iteration, fabrication, and then customization of the fibrous collagenous materials, illustrating a platform material that can be readily adapted to future tissue engineering applications.


Assuntos
Colágeno , Colágenos Fibrilares , Engenharia Tecidual , Colágeno Tipo I
2.
Macromol Biosci ; 22(3): e2100144, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34856056

RESUMO

While de novo collagen fibril formation is well-studied, there are few investigations into the growth and remodeling of extant fibrils, where molecular collagen incorporation into and erosion from the fibril surface must delicately balance during fibril growth and remodeling. Observing molecule/fibril interactions is difficult, requiring the tracking of molecular dynamics while, at the same time, minimizing the effect of the observation on fibril structure and assembly. To address the observation-interference problem, exogenous collagen molecules are tagged with small fluorophores and the fibrillogenesis kinetics of labeled collagen molecules as well as the structure and network morphology of assembled fibrils are examined. While excessive labeling significantly disturbs fibrillogenesis kinetics and network morphology of assembled fibrils, adding less than ≈1.2 labels per collagen molecule preserves these characteristics. Applications of the functional, labeled collagen probe are demonstrated in both cellular and acellular systems. The functional, labeled collagen associates strongly with native fibrils and when added to an in vitro model of corneal stromal development at low concentration, the labeled collagen is incorporated into a fine extracellular matrix (ECM) network associated with the cells within 24 h.


Assuntos
Colágeno Tipo I , Colágeno , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Cinética
3.
Bioelectricity ; 2(2): 186-197, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471846

RESUMO

Background: Collagenous tissues are composed of precisely oriented, tightly packed collagen fibril bundles to confer the maximal strength within the smallest volume. While this compact form benefits mobility, it consequentially restricts vascularity and cell density to a minimally viable level in some regions. These tissues reside in a homeostatic state with an unstable equilibrium, where perturbations to structure or molecular milieu cause descension into a long-term compromised state. Several studies have shown that glycosaminoglycans are key molecules required for healthy tissue maintenance. Our long-term goal is to determine if glycosaminoglycans serve a critical function of stabilizing soluble monomeric collagen in the interstitial fluid that bathes tissue for immediate availability in tissue development and repair in vivo. Materials and Methods: To test glycosaminoglycan and collagen interactions at the most fundamental level, we have explored the effect of the monosaccharides that populate the glycosaminoglycans of the extracellular matrix on collagen assembly kinetics, pre-established matrix stability, and collagen incorporation into a preassembled matrix. Results: Results showed that monosaccharides increased the threshold concentration required for spontaneous polymerization by at least three orders of magnitude. When the monosaccharides were introduced to a pre-existing collagen network, fibrillar dissociation was undetectable. Fluorescent-labeling studies illustrated that in the presence of the saccharide solution, soluble collagen maintains the functional capacity to integrate into a pre-existing network. Conclusion: This work demonstrates a feasible role for glycosaminoglycans in supporting tissue remodeling and highlights the potential importance of age-related deterioration of glycosaminoglycan biosynthesis in reference to the homeostasis of collagen-based tissues.

4.
Biomaterials ; 166: 96-108, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29549768

RESUMO

Wounds in the fetus can heal without scarring. Consequently, biomaterials that attempt to recapitulate the biophysical and biochemical properties of fetal skin have emerged as promising pro-regenerative strategies. The extracellular matrix (ECM) protein fibronectin (Fn) in particular is believed to play a crucial role in directing this regenerative phenotype. Accordingly, Fn has been implicated in numerous wound healing studies, yet remains untested in its fibrillar conformation as found in fetal skin. Here, we show that high extensional (∼1.2 ×105 s-1) and shear (∼3 ×105 s-1) strain rates in rotary jet spinning (RJS) can drive high throughput Fn fibrillogenesis (∼10 mL/min), thus producing nanofiber scaffolds that are used to effectively enhance wound healing. When tested on a full-thickness wound mouse model, Fn nanofiber dressings not only accelerated wound closure, but also significantly improved tissue restoration, recovering dermal and epidermal structures as well as skin appendages and adipose tissue. Together, these results suggest that bioprotein nanofiber fabrication via RJS could set a new paradigm for enhancing wound healing and may thus find use in a variety of regenerative medicine applications.


Assuntos
Materiais Biocompatíveis , Fibronectinas , Nanofibras , Cicatrização , Administração Cutânea , Animais , Materiais Biocompatíveis/química , Fibronectinas/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanofibras/química , Pele/efeitos dos fármacos , Pele/patologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos
6.
Tissue Eng Part A ; 22(19-20): 1204-1217, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27600605

RESUMO

In a fibroblast colony model of corneal stromal development, we asked how physiological tension influences the patterning dynamics of fibroblasts and the orientation of deposited extracellular matrix (ECM). Using long-term live-cell microscopy, enabled by an optically accessible mechanobioreactor, a primary human corneal fibroblast colony was cultured on three types of substrates: a mechanically biased, loaded, dense, disorganized collagen substrate (LDDCS), a glass coverslip, and an unloaded, dense, disorganized collagen substrate (UDDCS). On LDDCS, fibroblast orientation and migration along a preferred angle developed early, cell orientation was correlated over long distances, and the colony pattern was stable. On glass, fibroblast orientation was poorly correlated, developed more slowly, and colony patterns were metastable. On UDDCS, cell orientation was correlated over shorter distances compared with LDDCS specimens. On all substrates, the ECM pattern reflected the cell pattern. In summary, mechanically biasing the collagen substrate altered the early migration behavior of individual cells, leading to stable emergent cell patterning, which set the template for newly synthesized ECM.


Assuntos
Movimento Celular , Colágeno/biossíntese , Córnea/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Córnea/citologia , Fibroblastos/citologia , Humanos
7.
Interface Focus ; 6(3): 20160020, 2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27274809

RESUMO

[This corrects the article DOI: 10.1098/rsfs.2015.0088.].

8.
ACS Nano ; 10(5): 5027-40, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27070851

RESUMO

The type I collagen monomer is one of nature's most exquisite and prevalent structural tools. Its 300 nm triple-helical motifs assemble into tough extracellular fibers that transition seamlessly across tissue boundaries and exceed cell dimensions by up to 4 orders of magnitude. In spite of extensive investigation, no existing model satisfactorily explains how such continuous structures are generated and grown precisely where they are needed (aligned in the path of force) by discrete, microscale cells using materials with nanoscale dimensions. We present a simple fiber drawing experiment, which demonstrates that slightly concentrated type I collagen monomers can be "flow-crystallized" to form highly oriented, continuous, hierarchical fibers at cell-achievable strain rates (<1 s(-1)) and physiologically relevant concentrations (∼50 µM). We also show that application of tension following the drawing process maintains the structural integrity of the fibers. While mechanical tension has been shown to be a critical factor driving collagen fibril formation during tissue morphogenesis in developing animals, the precise role of force in the process of building tissue is not well understood. Our data directly couple mechanical tension, specifically the extensional strain rate, to collagen fibril assembly. We further derive a "growth equation" which predicts that application of extensional strains, either globally by developing muscles or locally by fibroblasts, can rapidly drive the fusion of already formed short fibrils to produce long-range, continuous fibers. The results provide a pathway to scalable connective tissue manufacturing and support a mechano-biological model of collagen fibril deposition and growth in vivo.


Assuntos
Colágeno Tipo I/química , Colágeno/química , Cristalização , Animais , Matriz Extracelular , Estresse Mecânico , Engenharia Tecidual
9.
Interface Focus ; 6(1): 20150088, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26855760

RESUMO

The bulk mechanical properties of tissues are highly tuned to the physiological loads they experience and reflect the hierarchical structure and mechanical properties of their constituent parts. A thorough understanding of the processes involved in tissue adaptation is required to develop multi-scale computational models of tissue remodelling. While extracellular matrix (ECM) remodelling is partly due to the changing cellular metabolic activity, there may also be mechanically directed changes in ECM nano/microscale organization which lead to mechanical tuning. The thermal and enzymatic stability of collagen, which is the principal load-bearing biopolymer in vertebrates, have been shown to be enhanced by force suggesting that collagen has an active role in ECM mechanical properties. Here, we ask how changes in the mechanical properties of a collagen-based material are reflected by alterations in the micro/nanoscale collagen network following cyclic loading. Surprisingly, we observed significantly higher tensile stiffness and ultimate tensile strength, roughly analogous to the effect of work hardening, in the absence of network realignment and alterations to the fibril area fraction. The data suggest that mechanical loading induces stabilizing changes internal to the fibrils themselves or in the fibril-fibril interactions. If such a cell-independent strengthening effect is operational in vivo, then it would be an important consideration in any multiscale computational approach to ECM growth and remodelling.

10.
Biomaterials ; 34(11): 2577-87, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23352045

RESUMO

Collagen's success as the principal structural element in load-bearing, connective tissue has motivated the development of numerous engineering approaches designed to recapitulate native fibril morphology and strength. It has been shown recently that collagen fibers can be drawn from monomeric solution through a fiber forming buffer (FFB), followed by numerous additional treatments in a complex serial process. However, internal fibril alignment, packing and resultant mechanical behavior of the fibers have not been optimized and remain inferior to native tissue. Further, no system has been developed which permits simultaneous application of molecular crowding, measurement of applied load, and direct observation of polymerization dynamics during fiber printing. The ability to perform well-controlled investigations early in the process of fiber formation, which vary single input parameters (i.e. collagen concentration, crowding agent concentration, draw rate, flow rate, temperature, pH, etc.) should substantially improve fiber morphology and strength. We have thus designed, built, and tested a versatile, in situ, optically-based, micromechanical assay and fiber printing system which permits the correlation of parameter changes with mechanical properties of fibers immediately after deposition into an FFB. We demonstrate the sensitivity of the assay by detecting changes in the fiber mechanics in response to draw rate, collagen type, small changes in the molecular crowding agent concentration and to variations in pH. In addition we found the ability to observe fiber polymerization dynamics leads to intriguing new insights into collagen assembly behavior.


Assuntos
Colágeno/análise , Colágeno/química , Calibragem , Tecido Conjuntivo , Desenho de Equipamento , Análise de Fourier , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Estresse Mecânico , Temperatura , Suporte de Carga
11.
Nano Lett ; 12(11): 5587-92, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23043581

RESUMO

Fibronectin (FN) textiles are built as nanometer-thick fabrics. When uniaxially loaded, these fabrics exhibit a distinct threshold between elastic and plastic deformation with increasing stretch. Fabric mechanics are modeled using an eight-chain network and two-state model, revealing that elastic properties of FN depend on conformational extension of the protein and that plastic deformation depends on domain unfolding. Our results suggest how the molecular architecture of a molecule can be exploited for designer mechanical properties of a bulk material.


Assuntos
Fibronectinas/química , Dimerização , Elasticidade , Matriz Extracelular/metabolismo , Modelos Estatísticos , Conformação Molecular , Óptica e Fotônica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Têxteis
12.
Biomaterials ; 33(30): 7366-74, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22846420

RESUMO

Collagen in vertebrate animals is often arranged in alternating lamellae or in bundles of aligned fibrils which are designed to withstand in vivo mechanical loads. The formation of these organized structures is thought to result from a complex, large-area integration of individual cell motion and locally-controlled synthesis of fibrillar arrays via cell-surface fibripositors (direct matrix printing). The difficulty of reproducing such a process in vitro has prevented tissue engineers from constructing clinically useful load-bearing connective tissue directly from collagen. However, we and others have taken the view that long-range organizational information is potentially encoded into the structure of the collagen molecule itself, allowing the control of fibril organization to extend far from cell (or bounding) surfaces. We here demonstrate a simple, fast, cell-free method capable of producing highly-organized, anistropic collagen fibrillar lamellae de novo which persist over relatively long-distances (tens to hundreds of microns). Our approach to nanoscale organizational control takes advantage of the intrinsic physiochemical properties of collagen molecules by inducing collagen association through molecular crowding and geometric confinement. To mimic biological tissues which comprise planar, aligned collagen lamellae (e.g. cornea, lamellar bone or annulus fibrosus), type I collagen was confined to a thin, planar geometry, concentrated through molecular crowding and polymerized. The resulting fibrillar lamellae show a striking resemblance to native load-bearing lamellae in that the fibrils are small, generally aligned in the plane of the confining space and change direction en masse throughout the thickness of the construct. The process of organizational control is consistent with embryonic development where the bounded planar cell sheets produced by fibroblasts suggest a similar confinement/concentration strategy. Such a simple approach to nanoscale organizational control of structure not only makes de novo tissue engineering a possibility, but also suggests a clearer pathway to organization for fibroblasts than direct matrix printing.


Assuntos
Colágeno/química , Substâncias Macromoleculares/química , Colágeno/ultraestrutura , Microscopia de Interferência
13.
Tissue Eng Part C Methods ; 17(7): 775-88, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21413901

RESUMO

Currently available bioreactor systems used by tissue engineers permit either direct, high-magnification observation of cell behavior or application of mechanical loads to growing tissue constructs, but not both simultaneously. Further, in most loading bioreactors, the volume of the dead space is not minimized to reduce the cost associated with perfusion media, exogenous stimulatory/inhibitory agents, proteases, and label. We have designed, developed, and tested a bioreactor that simultaneously satisfies the combined requirements of providing (i) controlled tensile mechanical stimulation, (ii) direct high-magnification imaging capability, and (iii) low dead-space volume. This novel mechanostimulatory (uniaxial tensile loading) bioreactor operates on an inverted microscope and permits continuous optical access (up to 600×) to a loaded, growing construct for extended periods of time (weeks). The reactor employs an adjustable reaction chamber in which the dead space can be reduced to <2 mL. The device has been used to cultivate our human primary corneal fibroblast-derived, tissue-engineered system for up to 14 days. Using the instrument we have successfully recorded (i) the process of fibroblasts populating, growing to confluence, and stratifying on different substrates; (ii) recorded complex and organized cell sheet motions; and (iii) recorded the behavior of a subpopulation of what appear to be degradative/catabolic cells within our fibroblast culture. The device is capable of providing detailed, long-term, dynamic images of mechanically stimulated cell/matrix interaction that have not been observed previously.


Assuntos
Reatores Biológicos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Bovinos , Células Cultivadas , Colágeno/farmacologia , Desenho de Equipamento , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Microscopia de Interferência , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...