Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 9154, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235878

RESUMO

The possibility to detect fast neutrons as a distinct signal from that one of γ-rays background is surely of great importance for several topics, spanning from homeland security to radiation monitoring in nuclear physics research plants. Nowadays, Helium-3 based detectors are extremely expensive, while the use of large volume liquid scintillators presents serious concerns related to spillage risks and waste disposal. A very attractive alternative is the use of commercially available solid scintillators, which exploits an aromatic polymer matrix entrapping very high loadings of primary dye, thereby enabling the use of pulse shape analysis (PSA) to discriminate between fast neutrons and γ-rays. In this work, we analyse in detail the optical features of a solid scintillator composed by polymethylphenylsiloxane (PMPS) as base polymer loaded with moderate amounts of 2,5-diphenyloxazole (PPO). Furthermore, fluorescence decay kinetics have been correlated to the observed pulse shape discrimination capabilities of this radiation and thermally resistant scintillator, whose performances have been discussed in terms of conformational features and excimers formation revealed by the optical analyses.

2.
J Mater Chem B ; 2(37): 6345-6353, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262151

RESUMO

Porous silicon micro-particles (micro-pSi) with size in the range of 1-10 µm are obtained by etching of silicon wafers followed by sonication. The derivatization of the micro-pSi surface by wet chemistry (silylation and coupling with a diamine) yields an interface, which exposes negative (carboxylic) or positive (amine) groups at pH 7.4. The surface modification, beyond the introduction of groups for the drug loading by covalent or electrostatic interactions, stabilizes the intense orange luminescence characteristic of the silicon nano-crystallites. Derivatization by amines introduces also a second emission in the blue region, which follows a different excitation pathway and can be attributed to the interface defects. The micro-pSi are efficiently internalized by human dendritic cells and do not show any toxic effect even at a concentration of 1 mg mL-1. The intrinsic luminescence of the differently functionalized micro-pSi is preserved inside the cells and permits the selective and efficient tracking of the microparticles without using molecular tags and thus leaving the organic coating available for the interaction with the drug. The results obtained suggest that the functionalized micro-pSi are an efficient platform for simultaneous imaging and delivery of therapeutic agents to the disease site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...