Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
2.
Nat Protoc ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491145

RESUMO

As different taxa evolve, gene order often changes slowly enough that chromosomal 'blocks' with conserved gene orders (synteny) are discernible. The MCScanX toolkit ( https://github.com/wyp1125/MCScanX ) was published in 2012 as freely available software for the detection of such 'colinear blocks' and subsequent synteny and evolutionary analyses based on genome-wide gene location and protein sequence information. Owing to its simplicity and high efficiency for colinear block detection, MCScanX provides a powerful tool for conducting diverse synteny and evolutionary analyses. Moreover, the detection of colinear blocks has been embraced as an integral step for pangenome graph construction. Here, new application trends of MCScanX are explored, striving to better connect this increasingly used tool to other tools and accelerate insight generation from exponentially growing sequence data. We provide a detailed protocol that covers how to install MCScanX on diverse platforms, tune parameters, prepare input files from data from the National Center for Biotechnology Information, run MCScanX and its visualization and evolutionary analysis tools, and connect MCScanX with external tools, including MCScanX-transposed, Circos and SynVisio. This protocol is easily implemented by users with minimal computational background and is adaptable to new data of interest to them. The data and utility programs for this protocol can be obtained from http://bdx-consulting.com/mcscanx-protocol .

3.
New Phytol ; 242(2): 786-796, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451101

RESUMO

Molecular genetic understanding of flowering time regulation is crucial for sorghum development. GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGhd7) is one of the six classical loci conferring photoperiod sensitivity of sorghum flowering. However, its functions remain poorly studied. The molecular functions of SbGhd7 were characterized. The gene regulatory network controlled by SbGhd7 was constructed and validated. The biological roles of SbGhd7 and its major targets were studied. SbGhd7 overexpression (OE) completely prevented sorghum flowering. Additionally, we show that SbGhd7 is a major negative regulator of flowering, binding to the promoter motif TGAATG(A/T)(A/T/C) and repressing transcription of the major florigen FLOWERING LOCUS T 10 (SbFT10) and floral activators EARLY HEADING DATE (SbEhd1), FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (SbFKF1) and EARLY FLOWERING 3 (SbELF3). Reinforcing the direct effect of SbGhd7, SbEhd1 OE activated the promoters of three functional florigens (SbFT1, SbFT8 and SbFT10), dramatically accelerating flowering. Our studies demonstrate that SbGhd7 is a major repressor of sorghum flowering by directly and indirectly targeting genes for flowering activation. The mechanism appears ancient. Our study extends the current model of floral transition regulation in sorghum and provides a framework for a comprehensive understanding of sorghum photoperiod response.


Assuntos
Sorghum , Sorghum/metabolismo , Proteínas de Plantas/metabolismo , Flores/fisiologia , Florígeno/metabolismo , Fotoperíodo , Regulação da Expressão Gênica de Plantas
4.
Plant Cell ; 36(5): 1186-1204, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382084

RESUMO

The rich diversity of angiosperms, both the planet's dominant flora and the cornerstone of agriculture, is integrally intertwined with a distinctive evolutionary history. Here, we explore the interplay between angiosperm genome organization and botanical diversity, empowered by genomic approaches ranging from genetic linkage mapping to analysis of gene regulation. Commonality in the genetic hardware of plants has enabled robust comparative genomics that has provided a broad picture of angiosperm evolution and implicated both general processes and specific elements in contributing to botanical diversity. We argue that the hardware of plant genomes-both in content and in dynamics-has been shaped by selection for rather substantial differences in gene regulation between plants and animals such as maize and human, organisms of comparable genome size and gene number. Their distinctive genome content and dynamics may reflect in part the indeterminate development of plants that puts strikingly different demands on gene regulation than in animals. Repeated polyploidization of plant genomes and multiplication of individual genes together with extensive rearrangement and differential retention provide rich raw material for selection of morphological and/or physiological variations conferring fitness in specific niches, whether natural or artificial. These findings exemplify the burgeoning information available to employ in increasing knowledge of plant biology and in modifying selected plants to better meet human needs.


Assuntos
Genoma de Planta , Magnoliopsida , Genoma de Planta/genética , Magnoliopsida/genética , Poliploidia , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Variação Genética
5.
Theor Appl Genet ; 137(2): 40, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296887

RESUMO

KEY MESSAGE: Analysis of fiber quality lncRNAs and their target genes from a pair of Gossypium mustelinum near-isogenic lines provide new prospects for improving the fiber quality of Upland cotton. Long noncoding RNAs (lncRNAs) are an important part of genome transcription and play roles in a wide range of biological processes in plants. In this research, a pair of near-isogenic cotton lines, namely, a Gossypium mustelinum introgression line (IL9) with outstanding fiber quality and its recurrent Upland cotton parent (PD94042), were used as the experimental materials. Cotton fibers were selected for lncRNA sequencing at 17 and 21 days post-anthesis. A total of 2693 differentially expressed genes were identified. In total, 5841 lncRNAs were ultimately screened, from which 163 differentially expressed lncRNAs were identified. Target genes of the lncRNAs were predicted by two different methods: cis and trans. Some of the target genes were related to cell components, membrane components, plant hormone signal transduction and catalytic metabolism, and the results indicated that there might also be important effects on the development of fiber. Four differentially expressed target genes related to fiber quality (Gomus.D05G015100, Gomus.A05G281300, Gomus.A12G023400 and Gomus.A10G226800) were screened through gene function annotation, and the functions of these four genes were verified through virus-induced gene silencing (VIGS). Compared to the negative controls, plants in which any of these four genes were silenced showed significant reductions in fiber strength. In addition, the plants in which the Gomus.A12G023400 gene was silenced showed a significant reduction in fiber uniformity, whereas the plants in which Gomus.A05G281300 was silenced showed a significant increase in fiber fineness as measured via micronaire. Our results showed that these genes play different roles during fiber development, impacting fiber quality.


Assuntos
Gossypium , RNA Longo não Codificante , RNA Longo não Codificante/genética , Fibra de Algodão , Fenótipo , Estruturas Vegetais/metabolismo , Regulação da Expressão Gênica de Plantas
6.
AoB Plants ; 15(6): plad070, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38028747

RESUMO

Identifying the factors that facilitate and limit invasive species' range expansion has both practical and theoretical importance, especially at the range edges. Here, we used reciprocal common garden experiments spanning the North/South and East/West range that include the North American core, intermediate and range edges of the globally invasive plant, Johnsongrass (Sorghum halepense) to investigate the interplay of climate, biotic interactions (i.e. competition) and patterns of adaptation. Our results suggest that the rapid range expansion of Johnsongrass into diverse environments across wide geographies occurred largely without local adaptation, but that further range expansion may be restricted by a fitness trade-off that limits population growth at the range edge. Interestingly, plant competition strongly dampened Johnsongrass growth but did not change the rank order performance of populations within a garden, though this varied among gardens (climates). Our findings highlight the importance of including the range edge when studying the range dynamics of invasive species, especially as we try to understand how invasive species will respond to accelerating global changes.

7.
J Hazard Mater ; 460: 132480, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683343

RESUMO

The main planting areas for pepper (Capsicum sp.) are high in cadmium (Cd), which is the most prevalent heavy metal pollutant worldwide. Breeding pepper cultivars with low Cd levels can promote sustainable agricultural production and ensure the safety of pepper products. To identify breeding targets for reducing Cd accumulation in pepper fruits, we performed a genome-wide association study on 186 accessions. Polymorphisms were associated with fruit Cd content in a genomic region containing a homolog of Arabidopsis (Arabidopsis thaliana) Heavy metal-transporting ATPase 1 (HMA1) encoding a P-type ATPase. In two cultivars with contrasting Cd accumulation, transcriptome analysis revealed differentially expressed genes enriched for carbohydrate metabolism and photosynthesis in fruits with high Cd accumulation, and a Cd2+/Zn2+-exporting ATPase gene (HMA). Heterologous expression of CaHMA1 in yeast increases Cd sensitivity. Overexpression of CaHMA1 conferred a severe increase in Cd content in Arabidopsis plants, whereas reduced CaHMA1 expression in pepper fruits decreased Cd content. We propose that CaHMA1 expression may be an important component of the high Cd accumulation in pepper plants.


Assuntos
Arabidopsis , Frutas , Frutas/genética , Cádmio , Arabidopsis/genética , Estudo de Associação Genômica Ampla , Adenosina Trifosfatases
8.
Plant Physiol Biochem ; 201: 107868, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37459803

RESUMO

Cotton breeding programs have focused on agronomically-desirable traits. Without targeted selection for tolerance to high temperature extremes, cotton will likely be more vulnerable to environment-induced yield loss. Recently-developed methods that couple chlorophyll fluorescence induction measurements with temperature response experiments could be used to identify genotypic variation in photosynthetic thermotolerance of specific photosynthetic processes for field-grown plants. It was hypothesized that diverse cotton genotypes would differ significantly in photosynthetic thermotolerance, specific thylakoid processes would exhibit differential sensitivities to high temperature, and that the most heat tolerant process would exhibit substantial genotypic variation in thermotolerance plasticity. A two-year field experiment was conducted at Tifton and Athens, Georgia, USA. Experiments included 10 genotypes in 2020 and 11 in 2021. Photosynthetic thermotolerance for field-collected leaf samples was assessed by determining the high temperature threshold resulting in a 15% decline in photosynthetic efficiency (T15) for energy trapping by photosystem II (ΦPo), intersystem electron transport (ΦEo), and photosystem I end electron acceptor reduction (ΦRo). Significant genotypic variation in photosynthetic thermotolerance was observed, but the response was dependent on location and photosynthetic parameter assessed. ΦEo was substantially more heat sensitive than ΦPo or ΦRo. Significant genotypic variation in thermotolerance plasticity of ΦEo was also observed. Identifying the weakest link in photosynthetic tolerance to high temperature will facilitate future selection efforts by focusing on the most heat-susceptible processes. Given the genotypic differences in environmental plasticity observed here, future research should evaluate genotypic variation in acclimation potential in controlled environments.

9.
G3 (Bethesda) ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506262

RESUMO

To improve resolution to small genomic regions and sensitivity to small-effect loci in the identification of genetic factors conferring the enlarged inflorescence and other traits of cauliflower while also expediting further genetic dissection, 104 near-isogenic introgression lines (NIILs) covering 78.56% of the cauliflower genome, were selected from an advanced backcross population using cauliflower [Brassica oleracea var. botrytis L., mutant for Orange gene (ORG)] as the donor parent and a rapid cycling line (TO1434) as recurrent parent. Subsets of the advanced backcross population and NIILs were planted in the field for 8 seasons, finding 141 marker-trait associations for 15 leaf-, stem-, and flower-traits. Exemplifying the usefulness of these lines, we delineated the previously known flower color gene to a 4.5 MB interval on C3; a gene for small plant size to a 3.4 MB region on C8; and a gene for large plant size and flowering time to a 6.1 MB region on C9. This approach unmasked closely linked QTL alleles with opposing effects (on chr. 8) and revealed both alleles with expected phenotypic effects and effects opposite the parental phenotypes. Selected B. oleracea NIILs with short generation time add new value to widely used research and teaching materials.


Assuntos
Brassica , Brassica/genética , Genes de Plantas , Fenótipo , Flores/genética , Folhas de Planta/genética , Variação Genética
10.
Sci Total Environ ; 895: 164975, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336402

RESUMO

Perennial grains have potential to contribute to ecological intensification of food production by enabling the direct harvest of human-edible crops without requiring annual cycles of disturbance and replanting. Studies of prototype perennial grains and other herbaceous perennials point to the ability of agroecosystems including these crops to protect water quality, enhance wildlife habitat, build soil quality, and sequester soil carbon. However, genetic improvement of perennial grain candidates has been hindered by limited investment due to uncertainty about whether the approach is viable. As efforts to develop perennial grain crops have expanded in past decades, critiques of the approach have arisen. With a recent report of perennial rice producing yields equivalent to those of annual rice over eight consecutive harvests, many theoretical concerns have been alleviated. Some valid questions remain over the timeline for new crop development, but we argue these may be mitigated by implementation of recent technological advances in crop breeding and genetics such as low-cost genotyping, genomic selection, and genome editing. With aggressive research investment in the development of new perennial grain crops, they can be developed and deployed to provide atmospheric greenhouse gas reductions.


Assuntos
Agricultura , Melhoramento Vegetal , Humanos , Grão Comestível , Produtos Agrícolas , Solo
11.
Mol Breed ; 43(5): 32, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37312746

RESUMO

Uncovering the genetic basis of agronomic traits in sorghum landraces that have adapted to various agro-climatic conditions would contribute to sorghum improvement efforts around the world. To identify quantitative trait nucleotides (QTNs) associated with nine agronomic traits in a panel of 304 sorghum accessions collected from diverse environments across Ethiopia (considered to be the center of origin and diversity), multi-locus genome-wide association studies (ML-GWAS) were performed using 79,754 high quality single nucleotide polymorphism (SNP) markers. Association analyses using six ML-GWAS models identified a set of 338 significantly (LOD ≥ 3)-associated QTNs for nine agronomic traits of sorghum accessions evaluated in two environments (E1 and E2) and their combined dataset (Em). Of these, 121 reliable QTNs, including 13 for flowering time (DF), 13 for plant height (PH), 9 for tiller number (TN), 15 for panicle weight (PWT), 30 for grain yield per panicle (GYP), 12 for structural panicle mass (SPM), 13 for hundred seed weight (HSW), 6 for grain number per panicle (GNP), and 10 for panicle exertion (PE) were consistently detected by at least three ML-GWAS methods and/or in two different environments. Notably, Ethylene responsive transcription factor gene AP2/ERF, known for regulation of plant growth, and the sorghum Terminal flower1/TF1 gene, which functions in the control of floral architecture, were identified as strong candidate genes associated with PH and HSW, respectively. This study provides an entry point for further validation studies to elucidate complex mechanisms controlling important agronomic traits in sorghum. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01381-5.

12.
Heredity (Edinb) ; 130(4): 209-222, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36754975

RESUMO

Introgression is a potential source of valuable genetic variation and interspecific introgression lines are important resources for plant breeders to access novel alleles. Experimental advanced-generation backcross populations contain individuals with genomic compositions similar to those resulting from natural interspecific hybridization and provide opportunities to study the nature and transmission pattern of donor chromatin in recipient genomes. Here, we analyze transmission of donor chromatin in reciprocal backcrosses between G. hirsutum and G. barbadense. Across the genome, recurrent backcrossing in both backgrounds yielded donor chromatin at slightly higher frequencies than the Mendelian expectation in BC5F1 plants, while the average frequency of donor alleles in BC5F2 segregating families was less than expected. In the two subgenomes of polyploid cotton, the rate of donor chromatin introgression was similar. Although donor chromatin was tolerated over much of the recipient genomes, 21 regions recalcitrant to donor alleles were identified. Only limited correspondence is observed between the recalcitrant regions in the two backgrounds, suggesting the effect of species background on introgression of donor segments. Genetic breakdown was progressive, with floral abscission and seed inviability ongoing during backcrossing cycles. Regions of either high or low introgression tended to be in terminal chromosomal regions that are generally rich in both genes and crossover events, with long stretches around the centromere having limited crossover activity resulting in relatively constant low introgression frequencies. Constraints on fixation and selection of donor alleles highlights the challenges of utilizing introgression breeding in crop improvement.


Assuntos
Cromatina , Gossypium , Humanos , Gossypium/genética , Cruzamentos Genéticos , Melhoramento Vegetal , Poliploidia
13.
Front Plant Sci ; 13: 981682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061803

RESUMO

Plant architecture, flowering time and maturity traits are important determinants of yield and fiber quality of cotton. Genetic dissection of loci determining these yield and quality components is complicated by numerous loci with alleles conferring small differences. Therefore, mapping populations segregating for smaller numbers and sizes of introgressed segments is expected to facilitate dissection of these complex quantitative traits. At an advanced stage in the development of reciprocal advanced backcross populations from crosses between elite Gossypium hirsutum cultivar 'Acala Maxxa' (GH) and G. barbadense 'Pima S6' (GB), we undertook mapping of plant architectural traits, flowering time and maturity. A total of 284 BC4F1 and BC4F2 progeny rows, 120 in GH and 164 in GB background, were evaluated for phenotype, with only 4 and 3 (of 7) traits showing significant differences among progenies. Genotyping by sequencing yielded 3,186 and 3,026 SNPs, respectively, that revealed a total of 27 QTLs in GH background and 22 in GB, for plant height, days to flowering, residual flowering at maturity and maturity. More than of 90% QTLs identified in both backgrounds had small effects (%PV < 10), supporting the merit of this population structure to reduce background noise and small effect QTLs. Germplasm developed in this study may serve as potential pre-breeding material to develop improved cotton cultivars.

15.
Comput Struct Biotechnol J ; 20: 3248-3256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782740

RESUMO

Whole-genome duplication (WGD) has occurred repeatedly during plant evolution and diversification, providing genetic layers for evolving new functions and phenotypes. Advances in long-read sequencing technologies have enabled sequencing and assembly of over 1000 plant genomes spanning nearly 800 species, in which a large set of ancient WGDs has been uncovered. Here, we review the recently reported WGDs that occurred in major plant lineages and key evolutionary positions, and highlight their contributions to morphological innovation and adaptive evolution. Current gaps and challenges in integrating enormous volumes of sequenced plant genomes, accurately inferring WGDs, and developing web-based analysis tools are emphasized. Looking to the future, ambitious genome sequencing projects and global efforts may substantially recapitulate the plant tree of life based on broader sampling of phylogenetic diversity, reveal much of the timetable of ancient WGDs, and address the biological significance of WGDs in plant adaptation and radiation.

16.
Front Plant Sci ; 13: 842741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498694

RESUMO

Ethyl methanesulfonate (EMS) mutagenesis offers important advantages for improving crops, such as cotton, with limited diversity in elite gene pools. EMS-induced point mutations are less frequently associated with deleterious traits than alleles from wild or exotic germplasm. From 157 mutant lines that have significantly improved fiber properties, we focused on nine mutant lines here. A total of eight populations were developed by crossing mutant lines in different combinations into GA230 (GA2004230) background. Multiple lines in each population were significantly improved for the fiber trait that distinguished the donor parent(s), demonstrating that an elite breeding line (GA230) could be improved for fiber qualities using the mutant lines. Genotypes improved for multiple fiber traits of interest suggesting that allele pyramiding is possible. Compared to midparent values, individual progeny in the population conferred fiber quality improvements of as much as 31.7% (in population O) for micronaire (MIC), 16.1% (in population P) for length, 22.4% (in population K) for strength, 4.1% (in population Q) for uniformity, 45.8% (in population N) for elongation, and 13.9% (in population O) for lint percentage (lint%). While further testing for stability of the phenotype and estimation of yield potential is necessary, mutation breeding shows promise as an approach to reduce the problem of the genetic bottleneck of upland cotton. The populations developed here may also contribute to identifying candidate genes and causal mutations for fiber quality improvement.

17.
Front Plant Sci ; 13: 870181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557717

RESUMO

Estimation of cotton yield before harvest offers many benefits to breeding programs, researchers and producers. Remote sensing enables efficient and consistent estimation of cotton yields, as opposed to traditional field measurements and surveys. The overall goal of this study was to develop a data processing pipeline to perform fast and accurate pre-harvest yield predictions of cotton breeding fields from aerial imagery using machine learning techniques. By using only a single plot image extracted from an orthomosaic map, a Support Vector Machine (SVM) classifier with four selected features was trained to identify the cotton pixels present in each plot image. The SVM classifier achieved an accuracy of 89%, a precision of 86%, a recall of 75%, and an F1-score of 80% at recognizing cotton pixels. After performing morphological image processing operations and applying a connected components algorithm, the classified cotton pixels were clustered to predict the number of cotton bolls at the plot level. Our model fitted the ground truth counts with an R 2 value of 0.93, a normalized root mean squared error of 0.07, and a mean absolute percentage error of 13.7%. This study demonstrates that aerial imagery with machine learning techniques can be a reliable, efficient, and effective tool for pre-harvest cotton yield prediction.

18.
J Exp Bot ; 73(16): 5730-5744, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35605043

RESUMO

Drought stress is one of the major constraints for crop production in the Sahel region of Africa. Here, we explore the potential to use natural genetic variation to build on the inherent drought tolerance of an elite sorghum cultivar, Teshale, that has been bred for Ethiopian conditions including chronic drought. We evaluated a backcross nested-association mapping population using 12 diverse founder lines crossed with Teshale under three drought-prone environments in Ethiopia. All 12 populations averaged higher head exsertion and lower leaf senescence than the recurrent parent in the two most stressful environments, reflecting new drought resilience mechanisms from the donors. A total of 154 quantitative trait loci (QTLs) were detected for eight drought-responsive traits, and their validity was supported by the fact that 113 (73.4%) overlapped with QTLs previously detected for the same traits, concentrated in regions previously associated with 'stay-green' traits. Allele effects showed that some favourable alleles are already present in the Ethiopian cultivar; however, the exotic donors offer rich scope for increasing drought resilience. Using model-selected SNPs associated with the eight traits identified in this study and three in a companion study, phenotypic prediction accuracies for grain yield were equivalent to genome-wide SNPs and were significantly better than random SNPs, indicating that the selected traits are predictive of sorghum grain yield.


Assuntos
Sorghum , Secas , Grão Comestível/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Sorghum/genética
19.
Sci Rep ; 12(1): 3346, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228611

RESUMO

Phalaenopsis spp. represent the most popular orchids worldwide. Both P. equestris and P. aphrodite are the two important breeding parents with the whole genome sequence available. However, marker-trait association is rarely used for floral traits in Phalaenopsis breeding. Here, we analyzed markers associated with aesthetic traits of Phalaenopsis orchids by using genome-wide association study (GWAS) with the F1 population P. Intermedia of 117 progenies derived from the cross between P. aphrodite and P. equestris. A total of 113,517 single nucleotide polymorphisms (SNPs) were identified in P. Intermedia by using genotyping-by-sequencing with the combination of two different restriction enzyme pairs, Hinp1 I/Hae III and Apek I/Hae III. The size-related traits from flowers were negatively related to the color-related traits. The 1191 SNPs from Hinp1 I/ Hae III and 23 simple sequence repeats were used to establish a high-density genetic map of 19 homolog groups for P. equestris. In addition, 10 quantitative trait loci were highly associated with four color-related traits on chromosomes 2, 5 and 9. According to the sequence within the linkage disequilibrium regions, 35 candidate genes were identified and related to anthocyanin biosynthesis. In conclusion, we performed marker-assisted gene identification of aesthetic traits with GWAS in Phalaenopsis orchids.


Assuntos
Orchidaceae , Estudo de Associação Genômica Ampla , Orchidaceae/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
20.
PLoS One ; 17(1): e0261748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025913

RESUMO

The frequency of G and C nucleotides in genomes varies from species to species, and sometimes even between different genes in the same genome. The monocot grasses have a bimodal distribution of genic GC content absent in dicots. We categorized plant genes from 5 dicots and 4 monocot grasses by synteny to related species and determined that syntenic genes have significantly higher GC content than non-syntenic genes at their 5`-end in the third position within codons for all 9 species. Lower GC content is correlated with gene duplication, as lack of synteny to distantly related genomes is associated with past interspersed gene duplications. Two mutation types can account for biased GC content, mutation of methylated C to T and gene conversion from A to G. Gene conversion involves non-reciprocal exchanges between homologous alleles and is not detectable when the alleles are identical or heterozygous for presence-absence variation, both likely situations for genes duplicated to new loci. Gene duplication can cause production of siRNA which can induce targeted methylation, elevating mC→T mutations. Recently duplicated plant genes are more frequently methylated and less likely to undergo gene conversion, each of these factors synergistically creating a mutational environment favoring AT nucleotides. The syntenic genes with high GC content in the grasses compose a subset that have undergone few duplications, or for which duplicate copies were purged by selection. We propose a "biased gene duplication / biased mutation" (BDBM) model that may explain the origin and trajectory of the observed link between duplication and genic GC bias. The BDBM model is supported by empirical data based on joint analyses of 9 angiosperm species with their genes categorized by duplication status, GC content, methylation levels and functional classes.


Assuntos
Genes de Plantas/genética , Poaceae/genética , Composição de Bases , Códon/genética , Epigenoma , Evolução Molecular , Conversão Gênica , Duplicação Gênica , Magnoliopsida/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...