Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(6): e3002151, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310918

RESUMO

The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.


Assuntos
COVID-19 , Mpox , Infecção por Zika virus , Zika virus , Humanos , COVID-19/epidemiologia , Pandemias , SARS-CoV-2/genética , Genômica
2.
Proc Natl Acad Sci U S A ; 120(10): e2214076120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848567

RESUMO

Lentinula is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, L. edodes. We sequenced 24 genomes representing eight described species and several unnamed lineages of Lentinula from 15 countries on four continents. Lentinula comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia-Australasia. To expand sampling of shiitake mushrooms, we assembled 60 genomes of L. edodes from China that were previously published as raw Illumina reads and added them to our dataset. Lentinula edodes sensu lato (s. lat.) contains three lineages that may warrant recognition as species, one including a single isolate from Nepal that is the sister group to the rest of L. edodes s. lat., a second with 20 cultivars and 12 wild isolates from China, Japan, Korea, and the Russian Far East, and a third with 28 wild isolates from China, Thailand, and Vietnam. Two additional lineages in China have arisen by hybridization among the second and third groups. Genes encoding cysteine sulfoxide lyase (lecsl) and γ-glutamyl transpeptidase (leggt), which are implicated in biosynthesis of the organosulfur flavor compound lenthionine, have diversified in Lentinula. Paralogs of both genes that are unique to Lentinula (lecsl 3 and leggt 5b) are coordinately up-regulated in fruiting bodies of L. edodes. The pangenome of L. edodes s. lat. contains 20,308 groups of orthologous genes, but only 6,438 orthogroups (32%) are shared among all strains, whereas 3,444 orthogroups (17%) are found only in wild populations, which should be targeted for conservation.


Assuntos
Lentinula , Filogenia , Ásia Oriental , Tailândia
3.
medRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36299420

RESUMO

The 2022 multi-country monkeypox (mpox) outbreak concurrent with the ongoing COVID-19 pandemic has further highlighted the need for genomic surveillance and rapid pathogen whole genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for SARS-CoV-2. Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical samples that tested presumptive positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR cycle threshold below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.

4.
J Adv Res ; 38: 91-106, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35572413

RESUMO

Introduction: Mushroom-forming fungi comprise diverse species that develop complex multicellular structures. In cultivated species, both ecological adaptation and artificial selection have driven genome evolution. However, little is known about the connections among genotype, phenotype and adaptation in mushroom-forming fungi. Objectives: This study aimed to (1) uncover the population structure and demographic history of Lentinula edodes, (2) dissect the genetic basis of adaptive evolution in L. edodes, and (3) determine if genes related to fruiting body development are involved in adaptive evolution. Methods: We analyzed genomes and fruiting body-related traits (FBRTs) in 133 L. edodes strains and conducted RNA-seq analysis of fruiting body development in the YS69 strain. Combined methods of genomic scan for divergence, genome-wide association studies (GWAS), and RNA-seq were used to dissect the genetic basis of adaptive evolution. Results: We detected three distinct subgroups of L. edodes via single nucleotide polymorphisms, which showed robust phenotypic and temperature response differentiation and correlation with geographical distribution. Demographic history inference suggests that the subgroups diverged 36,871 generations ago. Moreover, L. edodes cultivars in China may have originated from the vicinity of Northeast China. A total of 942 genes were found to be related to genetic divergence by genomic scan, and 719 genes were identified to be candidates underlying FBRTs by GWAS. Integrating results of genomic scan and GWAS, 80 genes were detected to be related to phenotypic differentiation. A total of 364 genes related to fruiting body development were involved in genetic divergence and phenotypic differentiation. Conclusion: Adaptation to the local environment, especially temperature, triggered genetic divergence and phenotypic differentiation of L. edodes. A general model for genetic divergence and phenotypic differentiation during adaptive evolution in L. edodes, which involves in signal perception and transduction, transcriptional regulation, and fruiting body morphogenesis, was also integrated here.


Assuntos
Agaricales , Cogumelos Shiitake , Agaricales/genética , Genoma , Estudo de Associação Genômica Ampla , Metagenômica , Cogumelos Shiitake/genética
5.
Mol Phylogenet Evol ; 173: 107494, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35490968

RESUMO

Lentinula (Basidiomycota, Agaricales) includes the most widely cultivated mushroom in the world, Lentinula edodes, also known as shiitake (Japanese) or xiang-gu (Chinese). At present, nine species are recognized in the genus, based on morphology, mating criteria, and geographic distribution. However, analyses of internal transcribed spacers (ITS) of ribosomal RNA genes have suggested that there are cryptic lineages. We analyzed a global-scale phylogenetic dataset from 325 Lentinula individuals from 24 countries in Asia-Australasia and the Americas plus Madagascar, with 325 sequences of ITS, 80 LSU sequences, and 111 sequences of translation elongation factor (tef1-α) genes. We recovered 15 independent lineages (Groups 1-15) that may correspond to species. Lineages in Asia-Australasia (Groups 1-5) and the Americas plus Madagascar (Groups 6-15) formed sister clades. Four lineages are represented only by sequences from single individuals and require further molecular sampling, including L. aff. raphanica (Group 7), L. ixodes (Group 8), L. boryana (Group 12), and L. aff. aciculospora (Group 14). Groups 1 and 5 are here referred to L. edodes and L. aff. edodes, respectively. However, these groups most likely represent the same species and are only recognized as (unsupported) monophyletic lineages by maximum likelihood analyses of ITS alone. Other putative species resolved here include L. lateritia (Group 2), L. novae-zelandieae (Group 3), L. aff. lateritia (Group 4), L. raphanica (Group 6), L. aff. detonsa (Group 9), L. detonsa (Group 10), L. guzmanii sp. nov. (Group 11), L. aciculospora (Group 13), and L. madagasikarensis (Group 15). Groups 9-12 represent the "L. boryana complex". Molecular clock and historical biogeographic analyses suggest that the most recent common ancestor (MRCA) of Lentinula can be placed in the middle Oligocene, ca. 30 million years ago (Ma), and had a likely presence in neotropical America. The MRCA of Lentinula in the Americas and Madagascar lived ca. 22 Ma in the Neotropics and the MRCA of Lentinula in Asia-Australasia lived ca. 6 Ma in Oceania. Given the current knowledge about plate tectonics and paleoclimatic models of the last 30 Myr, our phylogenetic hypothesis suggests that the extant distribution of Lentinula is likely to have arisen, in large part, due to long-distance dispersal. Lentinula collections include at least four dubious taxa that need further taxonomic studies: L. reticeps from the USA (Ohio); L. guarapiensis from Paraguay; Lentinus puiggarii from Brazil (São Paulo); and "L. platinedodes" from Vietnam. Approximately ten of the fifteen Groups are reported on Fagaceae, which appears to be the ancestral substrate of Lentinula.


Assuntos
Basidiomycota , Lentinula , Cogumelos Shiitake , Brasil , Humanos , Filogenia , Cogumelos Shiitake/genética
6.
Mol Plant Microbe Interact ; 32(5): 515-526, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30480479

RESUMO

Sporangia of Phytophthora infestans from pure cultures on agar plates are typically used in lab studies, whereas sporangia from leaflet lesions drive natural infections and epidemics. Multiple assays were performed to determine if sporangia from these two sources are equivalent. Sporangia from plate cultures showed much lower rates of indirect germination and produced much less disease in field and moist-chamber tests. This difference in aggressiveness was observed whether the sporangia had been previously incubated at 4°C (to induce indirect germination) or at 21°C (to prevent indirect germination). Furthermore, lesions caused by sporangia from plates produced much less sporulation. RNA-Seq analysis revealed that thousands of the >17,000 P. infestans genes with a RPKM (reads per kilobase of exon model per million mapped reads) >1 were differentially expressed in sporangia obtained from plate cultures of two independent field isolates compared with sporangia of those isolates from leaflet lesions. Among the significant differentially expressed genes (DEGs), putative RxLR effectors were overrepresented, with almost half of the 355 effectors with RPKM >1 being up- or downregulated. DEGs of both isolates include nine flagellar-associated genes, and all were down-regulated in plate sporangia. Ten elicitin genes were also detected as DEGs in both isolates, and nine (including INF1) were up-regulated in plate sporangia. These results corroborate previous observations that sporangia produced from plates and leaflets sometimes yield different experimental results and suggest hypotheses for potential mechanisms. We caution that use of plate sporangia in assays may not always produce results reflective of natural infections and epidemics.


Assuntos
Phytophthora infestans/fisiologia , Solanum lycopersicum , Esporângios/fisiologia , Transcriptoma , Solanum lycopersicum/parasitologia , Phytophthora infestans/genética , Phytophthora infestans/crescimento & desenvolvimento , Esporângios/genética , Esporângios/crescimento & desenvolvimento
7.
Mol Plant Pathol ; 17(1): 42-54, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25808779

RESUMO

The infection of plants by hemibiotrophic pathogens involves a complex and highly regulated transition from an initial biotrophic, asymptomatic stage to a later necrotrophic state, characterized by cell death. Little is known about how this transition is regulated, and there are conflicting views regarding the significance of the plant hormones jasmonic acid (JA) and salicylic acid (SA) in the different phases of infection. To provide a broad view of the hemibiotrophic infection process from the plant perspective, we surveyed the transcriptome of tomato (Solanum lycopersicum) during a compatible interaction with the hemibiotrophic oomycete Phytophthora infestans during three infection stages: biotrophic, the transition from biotrophy to necrotrophy, and the necrotrophic phase. Nearly 10 000 genes corresponding to proteins in approximately 400 biochemical pathways showed differential transcript abundance during the three infection stages, revealing a major reorganization of plant metabolism, including major changes in source-sink relations, as well as secondary metabolites. In addition, more than 100 putative resistance genes and pattern recognition receptor genes were induced, and both JA and SA levels and associated signalling pathways showed dynamic changes during the infection time course. The biotrophic phase was characterized by the induction of many defence systems, which were either insufficient, evaded or suppressed by the pathogen.


Assuntos
Interações Hospedeiro-Patógeno/genética , Phytophthora infestans/patogenicidade , Folhas de Planta/genética , Folhas de Planta/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Transcriptoma/genética , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Phytophthora infestans/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Fatores de Tempo
8.
Mol Plant Pathol ; 17(1): 29-41, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25845484

RESUMO

Hemibiotrophic plant pathogens, such as the oomycete Phytophthora infestans, employ a biphasic infection strategy, initially behaving as biotrophs, where minimal symptoms are exhibited by the plant, and subsequently as necrotrophs, feeding on dead plant tissue. The regulation of this transition and the breadth of molecular mechanisms that modulate plant defences are not well understood, although effector proteins secreted by the pathogen are thought to play a key role. We examined the transcriptional dynamics of P. infestans in a compatible interaction with its host tomato (Solanum lycopersicum) at three infection stages: biotrophy; the transition from biotrophy to necrotrophy; and necrotrophy. The expression data suggest a tight temporal regulation of many pathways associated with the suppression of plant defence mechanisms and pathogenicity, including the induction of putative cytoplasmic and apoplastic effectors. Twelve of these were experimentally evaluated to determine their ability to suppress necrosis caused by the P. infestans necrosis-inducing protein PiNPP1.1 in Nicotiana benthamiana. Four effectors suppressed necrosis, suggesting that they might prolong the biotrophic phase. This study suggests that a complex regulation of effector expression modulates the outcome of the interaction.


Assuntos
Phytophthora infestans/genética , Phytophthora infestans/patogenicidade , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Transcrição Gênica , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Folhas de Planta/microbiologia , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Fatores de Tempo , Nicotiana/microbiologia , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...