Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Thromb Haemost ; 12(9): 1533-1544, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25039491

RESUMO

BACKGROUND: Endothelial thrombomodulin (TM) is critically involved in anticoagulation, anti-inflammation, cytoprotection and normal fetal development. Tumor necrosis factor alpha (TNFα) suppresses TM expression. OBJECTIVE: TNFα has been shown to down-regulate TM partly via activation of nuclear factor kappa B (NF-κB). However, because the TM promoter lacks an NF-κB binding site, the direct involvement of NF-κB has been controversial. We investigated the role of the upstream regulatory serine kinase, inhibitory kappa-B kinase-ß (IKKß), in TM expression and function with or without TNFα treatment. METHODS: Inhibition of IKKß was achieved by specific chemical inhibitors, siRNA or shRNA. TM expression was assessed by qRT-PCR, Western blot, flow cytometry, luciferase reporter assay and chromatin immune-precipitation (ChIP) assay. TM function was estimated by generation of activated protein C (APC). NF-κB activation was determined by immunocytochemistry. RESULTS AND CONCLUSIONS: IKKß inhibition increased TM expression and function, and attenuated TNFα-mediated TM down-regulation. In contrast, inhibition of downstream canonical NF-κB protein family members p50 and p65 (RelA) failed to up-regulate TM expression and did not affect IKKß inhibition-mediated TM over-expression. However, knockdown of cRel and RelB, family members of the canonical and non-canonical NF-κB pathway, respectively, resulted in TM over-expression. IKKß inhibition caused over-expression, increased promoter activity and enhanced binding of Krüppel-like factor 2 (Klf2) to the TM promoter, which positively regulates TM expression. Finally, knockdown of Klf2 completely attenuated IKKß inhibition-mediated TM up-regulation. We conclude that IKKß regulates TM in a Klf2-dependent manner.


Assuntos
Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Quinase I-kappa B/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , NF-kappa B/metabolismo , Trombomodulina/metabolismo , Anti-Inflamatórios/química , Anticoagulantes/química , Sítios de Ligação , Imunoprecipitação da Cromatina , Regulação para Baixo , Citometria de Fluxo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteína C/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Braz J Med Biol Res ; 41(9): 765-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18820765

RESUMO

The effect of N-acetylcysteine, a thiolic antioxidant, on attenuation of phosphamidon-induced oxidative stress and immune dysfunction was evaluated in adult male Wistar rats weighing 200-250 g. Rats were divided into four groups, 8 animals/group, and treated with phosphamidon, N-acetylcysteine or the combination of both for 28 days. Oral administration of phosphamidon (1.74 mg/kg), an organophosphate insecticide, increased serum malondialdehyde (3.83 +/- 0.18 vs 2.91 +/- 0.24 nmol/mL; P < 0.05) and decreased erythrocyte superoxide dismutase (567.8 +/- 24.36 vs 749.16 +/- 102.61 U/gHb; P < 0.05), catalase activity (1.86 +/- 0.18 vs 2.43 +/- 0.08 U/gHb; P < 0.05) and whole blood glutathione levels (1.25 +/- 0.21 vs 2.28 +/- 0.08 mg/gHb; P < 0.05) showing phosphamidon-induced oxidative stress. Phosphamidon exposure markedly suppressed humoral immune response as assessed by antibody titer to ovalbumin (4.71 +/- 0.51 vs 8.00 +/- 0.12 -log(2); P < 0.05), and cell-mediated immune response as assessed by leukocyte migration inhibition (25.24 +/- 1.04 vs 70.8 +/- 1.09%; P < 0.05) and macrophage migration inhibition (20.38 +/- 0.99 vs 67.16 +/- 5.30%; P < 0.05) response. Phosphamidon exposure decreased IFN-small u, Cyrillic levels (40.7 +/- 3.21 vs 55.84 +/- 3.02 pg/mL; P < 0.05) suggesting a profound effect of phosphamidon on cell-mediated immune response. A phosphamidon-induced increase in TNF-alpha level (64.19 +/- 6.0 vs 23.16 +/- 4.0 pg/mL; P < 0.05) suggests a contributory role of immunocytes in oxidative stress. Co-administration of N-acetylcysteine (3.5 mmol/kg, orally) with phosphamidon attenuated the adverse effects of phosphamidon. These findings suggest that oral N-acetylcysteine treatment exerts protective effect and attenuates free radical injury and immune dysfunction caused by subchronic phosphamidon exposure.


Assuntos
Acetilcisteína/farmacologia , Formação de Anticorpos/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Inseticidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fosfamidona/toxicidade , Animais , Formação de Anticorpos/imunologia , Ensaios de Migração de Leucócitos , Glutationa/sangue , Imunidade Celular/efeitos dos fármacos , Interferon gama/metabolismo , Masculino , Malondialdeído/sangue , Ovalbumina/imunologia , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;41(9): 765-768, Sept. 2008. tab
Artigo em Inglês | LILACS | ID: lil-492878

RESUMO

The effect of N-acetylcysteine, a thiolic antioxidant, on attenuation of phosphamidon-induced oxidative stress and immune dysfunction was evaluated in adult male Wistar rats weighing 200-250 g. Rats were divided into four groups, 8 animals/group, and treated with phosphamidon, N-acetylcysteine or the combination of both for 28 days. Oral administration of phosphamidon (1.74 mg/kg), an organophosphate insecticide, increased serum malondialdehyde (3.83 ± 0.18 vs 2.91 ± 0.24 nmol/mL; P < 0.05) and decreased erythrocyte superoxide dismutase (567.8 ± 24.36 vs 749.16 ± 102.61 U/gHb; P < 0.05), catalase activity (1.86 ± 0.18 vs 2.43 ± 0.08 U/gHb; P < 0.05) and whole blood glutathione levels (1.25 ± 0.21 vs 2.28 ± 0.08 mg/gHb; P < 0.05) showing phosphamidon-induced oxidative stress. Phosphamidon exposure markedly suppressed humoral immune response as assessed by antibody titer to ovalbumin (4.71 ± 0.51 vs 8.00 ± 0.12 -log2; P < 0.05), and cell-mediated immune response as assessed by leukocyte migration inhibition (25.24 ± 1.04 vs 70.8 ± 1.09%; P < 0.05) and macrophage migration inhibition (20.38 ± 0.99 vs 67.16 ± 5.30%; P < 0.05) response. Phosphamidon exposure decreased IFN-у levels (40.7 ± 3.21 vs 55.84 ± 3.02 pg/mL; P < 0.05) suggesting a profound effect of phosphamidon on cell-mediated immune response. A phosphamidon-induced increase in TNF-α level (64.19 ± 6.0 vs 23.16 ± 4.0 pg/mL; P < 0.05) suggests a contributory role of immunocytes in oxidative stress. Co-administration of N-acetylcysteine (3.5 mmol/kg, orally) with phosphamidon attenuated the adverse effects of phosphamidon. These findings suggest that oral N-acetylcysteine treatment exerts protective effect and attenuates free radical injury and immune dysfunction caused by subchronic phosphamidon exposure.


Assuntos
Animais , Masculino , Ratos , Acetilcisteína/farmacologia , Formação de Anticorpos/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Inseticidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fosfamidona/toxicidade , Formação de Anticorpos/imunologia , Ensaios de Migração de Leucócitos , Glutationa/sangue , Imunidade Celular/efeitos dos fármacos , Interferon gama/metabolismo , Malondialdeído/sangue , Ovalbumina/imunologia , Ratos Wistar , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA