Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 257(1): 20, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538040

RESUMO

MAIN CONCLUSION: This study demonstrates the combinatorial management of multiple pests through a trans-acting siRNA (tasiRNA)-based micro RNA-induced gene silencing (MIGS) strategy. Transgenic cotton events demonstrated improved efficacy against cotton leaf curl disease, cotton leaf hopper and root-knot nematode. Cotton (Gossypium hirsutum L.), an important commercial crop grown worldwide is confronted by several pests and pathogens, thus reiterating interventions for their management. In this study, we report, the utility of a novel Arabidopsis miRNA173-directed trans-acting siRNA (tasiRNA)-based micro RNA-induced gene silencing (MIGS) strategy for the simultaneous management of cotton leaf curl disease (CLCuD), cotton leaf hopper (CLH; Amrasca biguttula biguttula) and root-knot nematode (RKN, Meloidogyne incognita). Cotton transgenics were developed with the MIGS construct targeting a total of 7 genes by an apical meristem-targeted in planta transformation strategy. Stable transgenics were selected using stringent selection pressure, molecular characterization and stress-specific bio-efficacy studies. We identified 8 superior events with 50-100% resistance against CLCuD, while reduction in the root-knot nematode multiplication factor in the range of 35-75% confirmed resistance to RKN. These transgenic cotton events were also detrimental to the growth and development of CLH, as only 43.3-62.5% of nymphs could survive. Based on the corroborating evidences obtained by all the bioefficacy analyses, 3 events viz., L-75-1, E-27-11, E-27-7 were found to be consistent in tackling the target pests. To the best of our knowledge, this report is the first of its kind demonstrating the possibility of combinatorial management of pests/diseases in cotton using MIGS approach. These identified events demonstrate immense utility of the strategy towards combinatorial stress management in cotton improvement programs.


Assuntos
MicroRNAs , Tylenchoidea , Animais , Gossypium/genética , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , MicroRNAs/genética , Inativação Gênica , Animais Geneticamente Modificados , Tylenchoidea/genética , RNA Interferente Pequeno/genética
2.
Annu Rev Virol ; 9(1): 521-548, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36173698

RESUMO

Plant viruses cause nearly half of the emerging plant diseases worldwide, contributing to 10-15% of crop yield losses. Control of plant viral diseases is mainly accomplished by extensive chemical applications targeting the vectors (i.e., insects, nematodes, fungi) transmitting these viruses. However, these chemicals have a significant negative effect on human health and the environment. RNA interference is an endogenous, cellular, sequence-specific RNA degradation mechanism in eukaryotes induced by double-stranded RNA molecules that has been exploited as an antiviral strategy through transgenesis. Because genetically modified crop plants are not accepted for cultivation in several countries globally, there is an urgent demand for alternative strategies. This has boosted research on exogenous application of the RNA-based biopesticides that are shown to exhibit significant protective effect against viral infections. Such environment-friendly and efficacious antiviral agents for crop protection will contribute to global food security, without adverse effects on human health.


Assuntos
Vírus de Plantas , RNA de Cadeia Dupla , Antivirais , Agentes de Controle Biológico , Produtos Agrícolas/genética , Humanos , Vírus de Plantas/genética , Plantas Geneticamente Modificadas/genética , Vacinação
3.
Virus Genes ; 58(4): 308-318, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35567667

RESUMO

Indian cassava mosaic virus (ICMV), responsible for the cassava mosaic disease in India, harbours two circular genomic components, DNA-A and DNA-B; the former being responsible for the encapsidation and replication and the latter for intra- and inter-cellular movement of the viral DNA. Two proteins, encoded by DNA-B, the movement protein (MP) and the nuclear shuttle protein (NSP), act in concert on the newly replicated viral DNA to move it from the nucleus to the cell periphery. To map the functional domains of NSP, the intra-cellular localization of its full-length protein and deletion derivatives was studied in the epidermal cells of detached leaves of the laboratory host plant, Nicotiana benthamiana, where the target proteins were transiently expressed as GFP fusions. This analysis revealed domains for nuclear localization at the N-terminus, as well as for localization towards the cell periphery both at the C-terminus and center of the NSP.


Assuntos
Begomovirus , Proteínas Nucleares , Begomovirus/genética , DNA Viral , Proteínas de Fluorescência Verde/genética , Nicotiana/genética
4.
Virus Genes ; 57(5): 469-473, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34379307

RESUMO

Citrus yellow mosaic badnavirus (CMBV) causes mosaic disease in all economically important citrus cultivars of India, with losses reaching up to 70%. CMBV belongs to the genus Badnavirus, family Caulimoviridae, possessing a circular double-stranded (ds) DNA genome with six open reading frames (ORFs I to VI), whose functions are yet to be deciphered. The RNA-silencing suppressor (RSS) activity has not been assigned to any CMBV ORF as yet. In the present study, it was found that ORFI exhibited RSS activity among all the six CMBV ORFs tested. Studies were done by employing the well-established Agrobacterium-mediated transient assay based on the transgenic Nicotiana benthamiana 16c plant line expressing the green fluorescent protein (GFP). The RSS activity of ORFI was confirmed by the analysis of the GFP visual expression in the agroinfiltrated leaves, further supported by quantification of GFP expression by RT-PCR. Based on the GFP visual expression, the CMBV ORFI was a weak RSS when compared to the p19 protein of tomato bushy stunt virus. In contrast, the ORFII, ORFIV, ORFV, ORFVI, and CP gene did not exhibit any RSS activity. Hence, ORFI is the first ORF of CMBV to be identified with RNA-silencing suppression activity.


Assuntos
Badnavirus/isolamento & purificação , Citrus/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , Badnavirus/genética , Badnavirus/patogenicidade , Citrus/crescimento & desenvolvimento , Citrus/virologia , Proteínas de Fluorescência Verde/genética , Índia , Fases de Leitura Aberta/genética , Doenças das Plantas/genética , Vírus de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/virologia , RNA/genética , Interferência de RNA , Nicotiana/virologia , Tombusvirus/genética
5.
Pest Manag Sci ; 77(7): 3396-3405, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33786977

RESUMO

BACKGROUND: Occurrence of multiple biotic stresses on crop plants result in drastic yield losses which may have severe impact on the food security. It is a challenge to design strategies for simultaneous management of these multiple stresses. Hence, establishment of innovative approaches that aid in their management is critical. Here, we have introgressed a micro RNA-induced gene silencing (MIGS) based combinatorial gene construct containing seven target gene sequences of cotton leaf curl disease (CLCuD), cotton leaf hopper (Amrasca biguttula biguttula), cotton whitefly (Bemisia tabaci) and root-knot nematode (Meloidogyne incognita). RESULTS: Stable transgenic lines of Nicotiana benthamiana were generated with the T-DNA harboring Arabidopsis miR173 target site fused to fragments of Sec23 and ecdysone receptor (EcR) genes of cotton leaf hopper and cotton whitefly. It also contained C2/replication associated protein (C2/Rep) and C4 (movement protein) along with ßC1 gene of betasatellite to target CLCuD, and two FMRFamide-like peptide (FLP) genes, Mi-flp14 and Mi-flp18 of M. incognita. These transgenic plants were assessed for the amenability of MIGS approach for pest control by efficacy evaluation against M. incognita. Results showed successful production of small interfering RNA (siRNA) through the tasiRNA (trans-acting siRNA) pathway in the transgenic plants corresponding to Mi-flp18 gene. Furthermore, we observed reduced Mi-flp14 and Mi-flp18 transcripts (up to 2.37 ± 0.12-fold) in females extracted from transgenic plants. The average number of galls, total endoparasites, egg masses and number of eggs per egg mass reduced were in the range 27-62%, 39-70%, 38-65% and 34-49%, respectively. More importantly, MIGS transgenic plants showed 80% reduction in the nematode multiplication factor (MF). CONCLUSION: This study demonstrates successful validation of the MIGS approach in the model plant, N. benthamiana for efficacy against M. incognita, as a prelude to translation to cotton. © 2021 Society of Chemical Industry.


Assuntos
MicroRNAs , Tylenchoidea , Animais , Feminino , Inativação Gênica , Interferência de RNA , RNA Interferente Pequeno/genética , Nicotiana/genética , Tylenchoidea/genética
6.
J Virol Methods ; 275: 113750, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647944

RESUMO

Papaya ringspot virus (PRSV) infections in papaya result in heavy yield losses, severely affecting the papaya industry worldwide, and hence warranting for effective control measures. In the past, transgenic papaya cultivars were developed that overexpressed parts of the PRSV genome and exhibited high levels of virus resistance. In the present study, a non-transgenic approach was employed, in which in vitro produced dsRNA molecules derived from a PRSV isolate from South India (PRSV-Tirupati) was tested for dsRNA-mediated protection against two isolates of PRSV through topical application of the dsRNA on papaya. The results showed that the dsRNA molecules from both the coat protein (CP) and helper component-proteinase (HC-Pro) genes of the PRSV-Tirupati isolate conferred 100 % resistance against PRSV-Tirupati infection. Further, the same dsRNA molecules were highly effective against the PRSV-Delhi isolate on the papaya cv. Pusa Nanha, conferring a resistance of 94 % and 81 %, respectively. Systemic papaya leaves of the dsRNA-treated plants were virus-free at 14 days post-inoculation, confirming the robustness of this non-transgenic virus control strategy. In contrast, the control TMV dsRNA did not protect against the PRSV infection. This study on the topical application of dsRNA opened up a new avenue for the control of papaya ringspot disease worldwide.


Assuntos
Carica/virologia , Doenças das Plantas/prevenção & controle , Potyvirus/efeitos dos fármacos , RNA de Cadeia Dupla/farmacologia , Proteínas do Capsídeo/genética , Cisteína Endopeptidases/genética , Índia , Doenças das Plantas/virologia , Potyvirus/patogenicidade , Proteínas Virais/genética
7.
Virusdisease ; 30(2): 261-268, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31179365

RESUMO

Papaya ringspot virus (PRSV) is one of the most devastating viruses which causes huge damage to papaya plantations across the globe. PRSV is a positive sense RNA virus encoding for a polyprotein that is processed into ten proteins. In this study for the first time we analyzed the variability for 15 PRSV isolates from a selected geographical region of a South Indian state Karnataka, which is under intensive papaya cultivation. Variability studies were done for two genes at the 5' end of the viral genome, namely P1 and helper component proteinase (Hc-Pro) and towards the 3' end, a 788 nt overlapping region of nuclear inclusion B (NIb, 692 nt) and of capsid protein (CP, 96 nt), referred as NIb-CP. Our studies indicate that the P1 is most variable region with a wider range of sequence identity, followed by Hc-Pro, while the 788 nt of NIb-CP was most conserved. P1 also showed maximum recombination events followed by Hc-Pro, whereas NIb-CP did not show any recombination. Further, the pattern and number of phylogenetic clusters was variable for each of the three genomic regions of PRSV isolates. Estimation of selection pressure for all the three PRSV genomic regions indicated negative and purifying selection.

8.
Genome Announc ; 6(22)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29853500

RESUMO

This is the first report of a Papaya ringspot virus (PRSV) isolate from the northeastern region of India. The nucleotide sequence identity of PRSV-Meghalaya was in the range of 72.6 to 82.5% with other Indian PRSV isolates, and the highest identity of 84.4% was with a French isolate. Population genetic analysis indicated positive selection.

9.
PLoS One ; 12(10): e0186786, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29077738

RESUMO

Cowpea is an important grain legume crop of Africa, Latin America, and Southeast Asia. Leaf curl and golden mosaic diseases caused by Mungbean yellow mosaic India virus (MYMIV) have emerged as most devastating viral diseases of cowpea in Southeast Asia. In this study, we employed RNA interference (RNAi) strategy to control cowpea-infecting MYMIV. For this, we generated transgenic cowpea plants harbouring three different intron hairpin RNAi constructs, containing the AC2, AC4 and fusion of AC2 and AC4 (AC2+AC4) of seven cowpea-infecting begomoviruses. The T0 and T1 transgenic cowpea lines of all the three constructs accumulated transgene-specific siRNAs. Transgenic plants were further assayed up to T1 generations, for resistance to MYMIV using agro-infectious clones. Nearly 100% resistance against MYMIV infection was observed in transgenic lines, expressing AC2-hp and AC2+AC4-hp RNA, when compared with untransformed controls and plants transformed with empty vectors, which developed severe viral disease symptoms within 3 weeks. The AC4-hp RNA expressing lines displayed appearance of milder symptoms after 5 weeks of MYMIV-inoculation. Northern blots revealed a positive correlation between the level of transgene-specific siRNAs accumulation and virus resistance. The MYMIV-resistant transgenic lines accumulated nearly zero or very low titres of viral DNA. The transgenic cowpea plants had normal phenotype with no yield penalty in greenhouse conditions. This is the first demonstration of RNAi-derived resistance to MYMIV in cowpea.


Assuntos
Begomovirus/patogenicidade , Plantas Geneticamente Modificadas/genética , Interferência de RNA , Vigna/virologia , Sudeste Asiático
10.
Viruses ; 9(7)2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696402

RESUMO

Sterility mosaic disease (SMD) of pigeonpea is a serious constraint for cultivation of pigeonpea in India and other South Asian countries. SMD of pigeonpea is associated with two distinct emaraviruses, Pigeonpea sterility mosaic virus 1 (PPSMV-1) and Pigeonpea sterility mosaic virus 2 (PPSMV-2), with genomes consisting of five and six negative-sense RNA segments, respectively. The recently published genome sequences of both PPSMV-1 and PPSMV-2 are from a single location, Patancheru from the state of Telangana in India. However, here we present the first report of sequence variability among 23 isolates of PPSMV-1 and PPSMV-2, collected from ten locations representing six states of India. Both PPSMV-1 and PPSMV-2 are shown to be present across India and to exhibit considerable sequence variability. Variability of RNA3 sequences was higher than the RNA4 sequences for both PPSMV-1 and PPSMV-2. Additionally, the sixth RNA segment (RNA6), previously reported to be associated with only PPSMV-2, is also associated with isolates of PPSMV-1. Multiplex reverse transcription PCR (RT-PCR) analyses show that PPSMV-1 and PPSMV-2 frequently occur as mixed infections. Further sequence analyses indicated the presence of reassortment of RNA4 between isolates of PPSMV-1 and PPSMV-2.


Assuntos
Cajanus/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de RNA/genética , RNA Viral/genética , Vírus Reordenados/genética , Variação Genética , Índia , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Análise de Sequência de DNA
11.
Viruses ; 8(10)2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27690084

RESUMO

The major threat for cassava cultivation on the Indian subcontinent is cassava mosaic disease (CMD) caused by cassava mosaic geminiviruses which are bipartite begomoviruses with DNA A and DNA B components. Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) cause CMD in India. Two isolates of SLCMV infected the cassava cultivar Sengutchi in the fields near Malappuram and Thiruvananthapuram cities of Kerala State, India. The Malappuram isolate was persistent when maintained in the Madurai Kamaraj University (MKU, Madurai, Tamil Nadu, India) greenhouse, whereas the Thiruvananthapuram isolate did not persist. The recovered cassava plants with the non-persistent SLCMV, which were maintained vegetative in quarantine in the University of Basel (Basel, Switzerland) greenhouse, displayed re-emergence of CMD after a six-month period. Interestingly, these plants did not carry SLCMV but carried ICMV. It is interpreted that the field-collected, SLCMV-infected cassava plants were co-infected with low levels of ICMV. The loss of SLCMV in recovered cassava plants, under greenhouse conditions, then facilitated the re-emergence of ICMV. The partial dimer clones of the persistent and non-persistent isolates of SLCMV and the re-emerged isolate of ICMV were infective in Nicotiana benthamiana upon agroinoculation. Studies on pseudo-recombination between SLCMV and ICMV in N. benthamiana provided evidence for trans-replication of ICMV DNA B by SLCMV DNA A.

12.
J Virol Methods ; 231: 38-43, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26912232

RESUMO

Artificial miRNAs (amiRNA) were generated targeting conserved sequences within the genomes of the two causal agents of Cassava brown streak disease (CBSD): Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Transient expression studies on ten amiRNAs targeting 21nt conserved sequences of P1(CBSV and UCBSV), P3(CBSV and UCBSV), CI(UCBSV), NIb(CBSV and UCBSV), CP(UCBSV) and the un-translated region (3'-UTR) were tested in Nicotiana benthamiana. Four out of the ten amiRNAs expressed the corresponding amiRNA at high levels. Transgenic N. benthamiana plants were developed for the four amiRNAs targeting the P1 and NIb genes of CBSV and the P1 and CP genes of UCBSV and shown to accumulate miRNA products. Transgenic plants challenged with CBSV and UCBSV isolates showed resistance levels that ranged between ∼20-60% against CBSV and UCBSV and correlated with expression levels of the transgenically derived miRNAs. MicroRNAs targeting P1 and NIb of CBSV showed protection against CBSV and UCBSV, while amiRNAs targeting the P1 and CP of UCBSV showed protection against UCBSV but were less efficient against CBSV. These results indicate a potential application of amiRNAs for engineering resistance to CBSD-causing viruses in cassava.


Assuntos
Resistência à Doença , MicroRNAs/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/fisiologia , MicroRNAs/genética , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Nicotiana/virologia
13.
Virus Res ; 213: 109-115, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26581664

RESUMO

Geminiviruses are among the most serious pathogens of many economically important crop plants and RNA interference (RNAi) is an important strategy for their control. Although any fragment of a viral genome can be used to generate a double stranded (ds) RNA trigger, the precursor for generation of siRNAs, the exact sequence and size requirements for efficient gene silencing and virus resistance have so far not been investigated. Previous efforts to control geminiviruses by gene silencing mostly targeted AC1, the gene encoding replication-associated protein. In this study we made RNAi constructs for all the genes of both the genomic components (DNA-A and DNA-B) of African cassava mosaic virus (ACMV-CM), one of the most devastating geminiviruses causing cassava mosaic disease (CMD) in Africa. Using transient agro-infiltration studies, RNAi constructs were evaluated for their ability to trigger gene silencing against the invading virus and protection against it. The results show that the selection of the DNA target sequence is an important determinant for the amount of siRNA produced and the extent of resistance. The ACMV genes AC1, AC2, AC4 from DNA-A and BC1 from DNA-B were effective targets for RNAi-mediated resistance and their siRNA expression was higher compared to other RNAi constructs. The RNAi construct targeting AC2, the suppressor of gene silencing of ACMV-CM gave highest level of resistance in the transient studies. This is the first report of targeting DNA-B to confer resistance to a bipartite geminivirus infection.


Assuntos
Geminiviridae/genética , Geminiviridae/imunologia , Genoma Viral , Manihot/imunologia , Manihot/virologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , DNA Viral/genética , Geminiviridae/isolamento & purificação , Genes Virais , Organismos Geneticamente Modificados , RNA Interferente Pequeno/genética
14.
J Gen Virol ; 96(Pt 5): 956-68, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26015320

RESUMO

Cassava brown streak disease (CBSD) has emerged as the most important viral disease of cassava (Manihot esculenta) in Africa and is a major threat to food security. CBSD is caused by two distinct species of ipomoviruses, Cassava brown streak virus and Ugandan cassava brown streak virus, belonging to the family Potyviridae. Previously, CBSD was reported only from the coastal lowlands of East Africa, but recently it has begun to spread as an epidemic throughout the Great Lakes region of East and Central Africa. This new spread represents a major threat to the cassava-growing regions of West Africa. CBSD-resistant cassava cultivars are being developed through breeding, and transgenic RNA interference-derived field resistance to CBSD has also been demonstrated. This review aims to provide a summary of the most important studies on the aetiology, epidemiology and control of CBSD and to highlight key research areas that need prioritization.


Assuntos
Abastecimento de Alimentos , Manihot/virologia , Doenças das Plantas/virologia , Potyviridae/isolamento & purificação , África Central , África Oriental , África Ocidental , Genótipo , Humanos , Potyviridae/classificação , Potyviridae/genética
15.
Virus Genes ; 50(3): 474-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25724177

RESUMO

Cassava mosaic disease caused by cassava mosaic geminiviruses (CMGs) with bipartite genome organization is a major constraint for production of cassava in the African continent and the Indian sub-continent. Currently, there are eleven recognized species of CMGs, and several diverse isolates represent them, with vast amount of sequence variability, reflecting into diversity of symptom severity/phenotypes. Here, we make a systematic effort to study the infection dynamics of several species of CMGs and their isolates. Further, we try to identify the genomic component of CMGs contributing to the manifestation of diverse patterns of symptoms and the molecular basis for the differential behavior of CMGs. The pseudo-recombination studies carried out by swapping of DNA-A and DNA-B components of the CMGs revealed that the DNA-B component significantly contributes to the symptom severity. Past studies had shown that the DNA-A component of Sri Lankan cassava mosaic virus shows monopartite feature. Thus, the ability of DNA-A component alone, to replicate and move systemically in the host plant with inherent monopartite features was investigated for all the CMGs. Geminiviruses are known to trigger gene silencing and are also its target, resulting in recovery of the host plant from viral infection. In the collection of several different CMG species and isolates we had, there was a vast variability in their recovery and non-recovery phenotypes. To understand the molecular basis of this, the origin and distribution of virus-derived small interfering RNAs were mapped across their genome and across the CMG-infected symptomatic Nicotiana benthamiana.


Assuntos
DNA Viral/genética , Geminiviridae/crescimento & desenvolvimento , Geminiviridae/genética , Regulação Viral da Expressão Gênica , Variação Genética , Doenças das Plantas/virologia , RNA Interferente Pequeno/genética , Geminiviridae/classificação , Perfilação da Expressão Gênica , Manihot/virologia , Nicotiana/virologia , Virulência , Replicação Viral
16.
Mol Plant Pathol ; 16(8): 775-86, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25640756

RESUMO

Pigeonpea sterility mosaic virus (PPSMV), a species of the genus Emaravirus, is the causal agent of sterility mosaic disease (SMD) of pigeonpea [Cajanus cajan (L.) Millsp]. This disease, dubbed the 'green plague', as the infected plants remain in the vegetative state without flower production, has been reported from India and a few other South-East Asian countries. SMD is estimated to result in an annual yield loss of over US$300 million in India alone. The aetiology of SMD, which remained a mystery for over 70 years, was resolved with the discovery of PPSMV in 2000 and its complete genome sequence in 2014. AETIOLOGY AND VIRUS TRANSMISSION: SMD is characterized by stunted and bushy plants, leaves of reduced size with chlorotic rings or mosaic symptoms, and partial or complete cessation of flower production (i.e. sterility). The causal agent of the disease is PPSMV, a virus with a segmented, negative-sense, single-stranded RNA genome, transmitted in a semi-persistent manner by an eriophyid mite Aceria cajani Channabassavanna (Acari: Arthropoda). Both the virus and vector are highly specific to pigeonpea and a few of its wild relatives, such as C. scarabaeoides and C. cajanifolius. Under experimental conditions, PPSMV was transmitted to Nicotiana benthamiana by sap inoculation using fresh extract of SMD-infected leaves (but not to pigeonpea); however, purified nucleoprotein preparations are not infectious. The virus was also transmitted to French bean (Phaseolus vulgaris L.) using viruliferous eriophyid mites. PPSMV is not seed transmitted in pigeonpea or other hosts known to be infected by this virus. On the basis of the differential host reactions in different geographical locations, the occurrence of diverse PPSMV strains was suspected. HOST RANGE AND EPIDEMIOLOGY: PPSMV can infect several genotypes of cultivated and wild relatives of pigeonpea. Experimental hosts include N. benthamiana, N. clevelandii, P. vulgaris and Chrozophora rottleri. However, pigeonpea alone and a few wild species of Cajanus were found to support the vector A. cajani. SMD is endemic in most of the pigeonpea-growing regions of India, but the incidence varies widely between regions and years. In nature, A. cajani populations were almost exclusively observed on SMD-infected pigeonpea, but not on healthy plants, indicating a strong communalistic relationship between the virus-infected plants and the vector. The epidemiology of SMD involves the virus, mite vector, cultivar and environmental conditions. Infected perennial and volunteer plants serve as a source for both the virus and its vector mites, and play an important role in the disease cycle. GENOME ORGANIZATION, GENE FUNCTION AND TAXONOMY: The PPSMV genome contains five segments of single-stranded RNA that are predicted to encode proteins in negative sense. The ribonucleoprotein complex is encased in quasi-spherical, membrane-bound virus particles of 100-150 nm. The largest segment, RNA-1, is 7022 nucleotides in length and codes for RNA-dependent RNA polymerase (2295 amino acids); RNA-2, with a sequence length of 2223 nucleotides, codes for glycoproteins (649 amino acids); RNA-3, with a sequence length of 1442 nucleotides, codes for nucleocapsid protein (309 amino acids); RNA-4, with a sequence length of 1563 nucleotides, codes for a putative movement protein p4 (362 amino acids); and RNA-5, with a sequence length of 1689 nucleotides, codes for p5 (474 amino acids), a protein with unknown function. PPSMV was recently classified as a species in the genus Emaravirus, a genus whose members show features resembling those of members of the genera Tospovirus (Family: Bunyaviridae) and Tenuivirus, both of which comprise single-stranded RNA viruses that encode proteins by an ambisense strategy. SMD CONTROL: The disease is mainly controlled using SMD-resistant cultivars. However, the occurrence of distinct strains/isolates of PPSMV in different locations makes it difficult to incorporate broad-spectrum resistance. Studies on the inheritance of SMD resistance in different cultivars against different isolates of PPSMV indicate that the resistance is mostly governed by recessive genes, although there are contrasting interpretations of the data. Genetic engineering through RNA-interference (RNAi) and resistant gene-based strategies are some of the potential approaches for the transgenic control of SMD. Seed treatment or soil and foliar application of a number of organophosphorus-based insecticides or acaricides, which are recommended for the management of the vector mites, are seldom practised because of prohibitive costs and also their risks to human health and the environment.


Assuntos
Fabaceae/virologia , Vírus do Mosaico/patogenicidade , Ásia , Dados de Sequência Molecular , Vírus do Mosaico/classificação , Filogenia
17.
Mol Plant Pathol ; 16(5): 484-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25220764

RESUMO

RNA silencing is a sequence-specific post-transcriptional gene inactivation mechanism that operates in diverse organisms and that can extend beyond its site of initiation, owing to the movement of the silencing signal, called non-autonomous gene silencing. Previous studies have shown that several factors manifest the movement of the silencing signal, such as the size (21 or 24 nucleotides) of the secondary small interfering RNA (siRNA) produced, the steady-state concentration of siRNAs and their cognate messenger RNA (mRNA) or a change in the sink-source status of plant parts affecting phloem translocation. Our study shows that both light intensity and temperature have a significant impact on the systemic movement of the silencing signal in transient agroinfiltration studies in Nicotiana benthamiana. At higher light intensities (≥ 450 µE/m(2)/s) and higher temperatures (≥ 30 °C), gene silencing was localized to leaf tissue that was infiltrated, without any systemic spread. Interestingly, in these light and temperature conditions (≥ 450 µE/m(2) /s and ≥ 30 °C), the N. benthamiana plants showed recovery from the viral symptoms. However, the reduced systemic silencing and reduced viral symptom severity at higher light intensities were caused by a change in the sink-source status of the plant, ultimately affecting the phloem translocation of small RNAs or the viral genome. In contrast, at lower light intensities (<300 µE/m(2)/s) with a constant temperature of 25 °C, there was strong systemic movement of the silencing signal in the N. benthamiana plants and reduced recovery from virus infections. The accumulation of gene-specific siRNAs was reduced at higher temperature as a result of a reduction in the accumulation of transcript on transient agroinfiltration of RNA interference (RNAi) constructs, mostly because of poor T-DNA transfer activity of Agrobacterium, possibly also accompanied by reduced phloem translocation.


Assuntos
Agrobacterium/fisiologia , Inativação Gênica/efeitos da radiação , Luz , Nicotiana/efeitos da radiação , Nicotiana/virologia , Temperatura , DNA Bacteriano/genética , DNA Viral/genética , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/metabolismo , Umidade , Vírus do Mosaico/fisiologia , Fenótipo , Floema/efeitos da radiação , Floema/virologia , Doenças das Plantas/virologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/virologia , Plantas Geneticamente Modificadas , RNA Interferente Pequeno/genética , Nicotiana/genética , Transgenes
18.
Adv Virus Res ; 90: 431-505, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25410108

RESUMO

Diverse array of food legume crops (Fabaceae: Papilionoideae) have been adopted worldwide for their protein-rich seed. Choice of legumes and their importance vary in different parts of the world. The economically important legumes are severely affected by a range of virus diseases causing significant economic losses due to reduction in grain production, poor quality seed, and costs incurred in phytosanitation and disease control. The majority of the viruses infecting legumes are vectored by insects, and several of them are also seed transmitted, thus assuming importance in the quarantine and in the epidemiology. This review is focused on the economically important viruses of soybean, groundnut, common bean, cowpea, pigeonpea, mungbean, urdbean, chickpea, pea, faba bean, and lentil and begomovirus diseases of three minor tropical food legumes (hyacinth bean, horse gram, and lima bean). Aspects included are geographic distribution, impact on crop growth and yields, virus characteristics, diagnosis of causal viruses, disease epidemiology, and options for control. Effectiveness of selection and planting with virus-free seed, phytosanitation, manipulation of crop cultural and agronomic practices, control of virus vectors and host plant resistance, and potential of transgenic resistance for legume virus disease control are discussed.


Assuntos
Agricultura/métodos , Fabaceae/virologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Plantas Comestíveis/virologia , Clima Tropical , Viroses/prevenção & controle , Animais , Vetores de Doenças , Controle de Insetos , Insetos/virologia , Quarentena , Viroses/diagnóstico
19.
Mol Plant Pathol ; 12(7): 677-87, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21726367

RESUMO

Cassava brown streak disease (CBSD), caused by Cassava brown streak Uganda virus (CBSUV) and Cassava brown streak virus (CBSV), is of new epidemic importance to cassava (Manihot esculenta Crantz) production in East Africa, and an emerging threat to the crop in Central and West Africa. This study demonstrates that at least one of these two ipomoviruses, CBSUV, can be efficiently controlled using RNA interference (RNAi) technology in cassava. An RNAi construct targeting the near full-length coat protein (FL-CP) of CBSUV was expressed constitutively as a hairpin construct in cassava. Transgenic cassava lines expressing small interfering RNAs (siRNAs) against this sequence showed 100% resistance to CBSUV across replicated graft inoculation experiments. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed the presence of CBSUV in leaves and some tuberous roots from challenged controls, but not in the same tissues from transgenic plants. This is the first demonstration of RNAi-mediated resistance to the ipomovirus CBSUV in cassava.


Assuntos
Manihot/virologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Potyviridae/patogenicidade , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Interferência de RNA/fisiologia
20.
Virol J ; 8: 238, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21592402

RESUMO

BACKGROUND: Whitefly-transmitted geminiviruses (begomoviruses) are a major limiting factor for the production of numerous dicotyledonous crops throughout the world. Begomoviruses differ in the number of components that make up their genomes and association with satellites, and yet they cause strikingly similar phenotypes, such as leaf curling, chlorosis and stunted plant growth. MicroRNAs (miRNAs) are small endogenous RNAs that regulate plant growth and development. The study described here was aimed at investigating the effects of each virus encoded gene on the levels of developmental miRNAs to identify common trends between distinct begomoviruses. RESULTS: All genes encoded by four distinct begomoviruses (African cassava mosaic virus [ACMV], Cabbage leaf curl virus [CbLCuV], Tomato yellow leaf curl virus [TYLCV] and Cotton leaf curl virus/Cotton leaf curl betasatellite [CLCuV/CLCuMB]) were expressed from a Potato virus X (PVX) vector in Nicotiana benthamiana. Changes in the levels of ten miRNAs in response to the virus genes were determined by northern blotting using specific miRNA probes. For the monopartite begomoviruses (TYLCV and CLCuMV) the V2 gene product was identified as the major symptom determinant while for bipartite begomoviruses (ACMV and CbLCuV) more than one gene appears to contribute to symptoms and this is reflected in changes in miRNA levels. The phenotype induced by expression of the ßC1 gene of the betasatellite CLCuMB was the most distinct and consisted of leaf curling, vein swelling, thick green veins and enations and the pattern of changes in miRNA levels was the most distinct. CONCLUSIONS: Our results have identified symptom determinants encoded by begomoviruses and show that developmental abnormalities caused by transient expression of begomovirus genes correlates with altered levels of developmental miRNAs. Additionally, all begomovirus genes were shown to modulate miRNA levels, the first time this has been shown to be the case.


Assuntos
Begomovirus/genética , Expressão Gênica , Genes Virais , Interações Hospedeiro-Patógeno , MicroRNAs/biossíntese , Nicotiana/virologia , Doenças das Plantas/virologia , Northern Blotting , Vetores Genéticos , Fenótipo , Potexvirus/genética , Proteínas Virais/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...