Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Biotechnol ; 25(3): 313-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37287299

RESUMO

INTRODUCTION: Psoriasis is a chronic skin condition caused by an autoimmune response that accelerates the life cycle of skin cells, resulting in the characteristic symptoms of scaling, inflammation, and itching. METHODS: Palliative treatment options for psoriasis often prioritize the use of volatile oils. These oils contain monoterpenes, sesquiterpenes, and phenylpropanoids that are intricately linked to the molecular cascades involved in the pathogenesis and symptoms of psoriasis. To evaluate the antipsoriatic efficacy of volatile oils and their components, we conducted a systematic review of scientific studies. Our literature search encompassed various online databases, including PubMed, BIREME, SCIELO, Open Grey, Scopus, and ScienceDirect. The selected studies included experimental in vitro/in vivo assessments as well as clinical studies that examined the potential of volatile oils and their extracts as antipsoriatic agents. We excluded conference proceedings, case reports, editorials, and abstracts. Ultimately, we identified and evaluated a total of 12 studies for inclusion in our analysis. RESULTS: The data collected, compiled, and analyzed strongly support the interaction between volatile oils and their constituents with the key molecular pathways involved in the pathogenesis of psoriasis and the development of its symptoms. Volatile oils play a significant role in the palliative treatment of psoriasis, while their chemical constituents have the potential to reduce the symptoms and recurrence of this condition. CONCLUSION: The current review highlights that the constituents found in volatile oils offer distinct chemical frameworks that can be regarded as promising starting points for the exploration and development of innovative antipsoriatic agents.


Assuntos
Fármacos Dermatológicos , Óleos Voláteis , Psoríase , Sesquiterpenos , Humanos , Óleos Voláteis/uso terapêutico , Óleos Voláteis/química , Plantas , Monoterpenos , Psoríase/tratamento farmacológico , Sesquiterpenos/análise , Sesquiterpenos/uso terapêutico , Fármacos Dermatológicos/uso terapêutico
2.
Sci Rep ; 13(1): 17208, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821672

RESUMO

In the months of March-June, India experiences high daytime temperatures (Tmax), which sometimes lead to heatwave-like conditions over India. In this study, 10 different machine learning models are evaluated for their ability to predict the daily Tmax anomalies 10 days ahead in the months of March-June. Several model experiments were carried out to identify an optimal model to predict daily Tmax anomalies over India. The results indicate that the AdaBoost regressor with Multi-layer Perceptron as the base estimator is an optimal model to predict the Tmax anomalies over India in the months of March-June. The optimal model predictions are benchmarked against 10-day persistence predictions and the predictions from the Climate Forecast System (CFS) reforecast. The results indicate that the machine learning model skill is higher than persistence and comparable to CFS reforecast 10-day predictions in April and May. In March and June, the machine learning models have low skill scores and perform no better than persistence. These results indicate that the machine learning models are promising tools to predict the surface air maximum temperature anomalies over India in April and May and can complement predictions from more sophisticated numerical models.

3.
Int J Biol Macromol ; 214: 391-401, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714868

RESUMO

Thymoquinone (TQ), the most prominent constituent of Nigella sativa seeds, essential oil, is reported to possess an organ protective effect via Nrf2 expression and activation of Phase-II antioxidant enzymes. Haemorrhagic cystitis is the sudden onset of haematuria combined with bladder pain and irritable bladder symptoms are the known toxic effects of cyclophosphamide (CYP) chemotherapy. The objective of the present study was to investigate and compare the protective effect of thymoquinone (TQ) and thymoquinone nanoparticles (TQ-NP) in the kidney against CYP-induced haemorrhagic cystitis. Primarily, TQ-NP was fabricated by synthesis of N-acetylated chitosan and nanoparticle preparation by the ionic gelation technique. They were characterized by particle size, polydispersive index (PDI), zeta potential, entrapment efficiency (EE), SEM, and dynamic scattering calorimetry (DSC). Moreover, fluorescein isothiocyanate (FITC) labeled NPs were prepared for biodistribution studies. The protective mechanisms of TQ-NP included its anti-inflammatory activity, inhibitory effects on cytokine levels, and protection against the DNA damage in the bladder epithelium. The cystitis was induced in rats by orally administering 200 mg/kg of CYP. The dose-dependent protective effect of the TQ-NP was determined by intravenously administering 1, 2, and 5 mg/kg of the TQ-NP to CYP-treated rats. The present study revealed that the TQ-NP prepared by ionic gelation method provides kidney targeted delivery of TQ as compared to TQ solution. The mean particle size, PDI, and %EE of TQ-NP were 272.6 nm, 0.216, 70.81 ± 0.12% respectively. The zeta potential of thymoquinone-loaded nanoparticles was found to be -20.7 mV and - 22.6 mV respectively before and after lyophilization. SEM study also confirmed the small size and spherical shape. Pharmacokinetic studies revealed the improvement in half-life and prolonged action of the TQ-NP as compared to the TQ solution. Also, TQ-NP administration showed more protection against the characteristic histological alterations in the bladder in comparison to TQ solution. The present study indicates that TQ-NP exerts potent anti-oxidant, DNA protective and cytokine inhibitory activity at considerably lower concentrations as compared to plain TQ solution. The nano formulation of TQ using N-acetylated chitosan provides effective kidney targeted delivery of TQ, which in turn improves its retention and protective efficacy against CYP-induced haemorrhagic cystitis.


Assuntos
Quitosana , Cistite , Nanopartículas , Animais , Antioxidantes , Benzoquinonas/química , Benzoquinonas/farmacologia , Ciclofosfamida/toxicidade , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Citocinas , Dano ao DNA , Hemorragia/induzido quimicamente , Hemorragia/tratamento farmacológico , Rim , Nanopartículas/química , Ratos , Distribuição Tecidual
4.
Biomed Pharmacother ; 132: 110889, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113429

RESUMO

The endocannabinoid system (ECS) is natural physiological system in the humans. The presence of the ECS system involves different roles in body. The endocannabinoid system involves regulation of most of the centers, which regulates the hunger and leads to changes in the weight. In the present article, we reviewed the role of natural cannabinoid compounds in metabolic disorders and related complications. We studied variety of a plant-derived cannabinoids in treating the metabolic syndrome including stoutness, fatty acid liver diseases, insulin obstruction, dementia, hypertension, lipid abnormalities, non-alcoholic steatohepatitis, endothelial damage, and polycystic ovarian syndrome and so on. The activation of cannabinoid receptors demonstrates a significant number of beneficial approaches concerning metabolic syndrome and reduces the pro-inflammatory cytokines on account of aggravation, decreased oxidative stress and uneasiness, diminishes liver fibrosis, with reduces adiponectin. Pre-clinical investigations of plant-derived cannabinoids resulted in promising outcomes. The different distinctive plant-derived cannabinoids were discovered like cannabidiol (CBD), cannabinol (CBN), cannabichromene (CBC), and cannabidiol (CBG). It has been observed that endogenous cannabinoids and plant-derived cannabinoids have an advantageous impact on limiting the metabolic disorder arising due to lifestyle changes.


Assuntos
Agonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/uso terapêutico , Canabinoides/uso terapêutico , Endocanabinoides/metabolismo , Síndrome Metabólica/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Receptores de Canabinoides/efeitos dos fármacos , Animais , Agonistas de Receptores de Canabinoides/efeitos adversos , Agonistas de Receptores de Canabinoides/isolamento & purificação , Antagonistas de Receptores de Canabinoides/efeitos adversos , Antagonistas de Receptores de Canabinoides/isolamento & purificação , Canabinoides/efeitos adversos , Canabinoides/isolamento & purificação , Agonismo Parcial de Drogas , Humanos , Síndrome Metabólica/metabolismo , Extratos Vegetais/efeitos adversos , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Receptores de Canabinoides/metabolismo , Transdução de Sinais
5.
Cancer Chemother Pharmacol ; 86(3): 419-426, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32812061

RESUMO

PURPOSE: Aloin, an anthraquinone present in the aloe species, possesses antiangiogenic, chemopreventive and antioxidant properties. It exerts cytotoxicity against breast cancer and ovarian cancer cell lines. These properties of aloin project it as a chemopreventive adjuvant to anticancer chemotherapy. METHODS: We evaluated the effect of concurrent oral administration of aloin against doxorubicin (DOX)-induced cardiotoxicity in rats. The protective effects of aloin against DOX-induced toxicity were evident as a statistically significant inhibition of a rise in the biochemical markers of myocardial damage including lactate dehydrogenase (LDH), creatinine kinase-myocardial band (CK-MB), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). RESULTS: Aloin dose dependently inhibited the DOX-induced changes in ECG like increased ST-height and prolonged QT interval. It protected heart against the lipid peroxidation and restored the levels of antioxidative defenses: reduced glutathione, catalase and superoxide dismutase. Aloin prominently reduced the levels of proinflammatory cytokines- TNF-α, IL-1ß and IL-6. Notably, the significant protective effects of aloin were evident even at the strikingly lower doses of 1 and 5 mg/kg per day. CONCLUSION: Our results highlight the necessity to further investigate the chemopreventive effects of aloin against other chemotherapeutic agents.


Assuntos
Cardiotoxicidade/prevenção & controle , Citocinas/metabolismo , Doxorrubicina/efeitos adversos , Emodina/análogos & derivados , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Catárticos/farmacologia , Emodina/farmacologia , Masculino , Ratos , Ratos Wistar
6.
Naunyn Schmiedebergs Arch Pharmacol ; 393(8): 1365-1372, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32025748

RESUMO

Aloin exerts concentration-dependent pro-oxidant and antioxidant effects when tested in vitro. Such duality of effects has not been investigated through in vivo studies on aloin. We evaluated the effects of aloin at doses ranging between 1 and 125 mg/kg against the arsenic trioxide (As2O3)-induced cardiotoxicity in mice. As2O3 (5 mg/kg/day) was intraperitoneally administrated for 10 days. Aloin was administered through oral gavage at 1, 5, 25, and 125 mg/kg/day. As2O3 induced rise in ST height and QT interval in ECG, increased oxidative stress, and depleted the antioxidative defense. As2O3 increased inflammatory cytokine concentrations in the heart. Aloin dose dependently inhibited the As2O3-induced cardiotoxicity. There was no evidence of increased oxidative stress in the low-dose aloin-treated mice receiving As2O3. Our results indicate that aloin possesses cardioprotective potentials and its pro-oxidant effect is not evident in vivo at tested doses.


Assuntos
Anti-Inflamatórios/farmacologia , Trióxido de Arsênio , Membrana Celular/efeitos dos fármacos , Citocinas/metabolismo , Emodina/análogos & derivados , Cardiopatias/prevenção & controle , Mediadores da Inflamação/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Cardiotoxicidade , Membrana Celular/metabolismo , Membrana Celular/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Emodina/farmacologia , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos
7.
Biol Trace Elem Res ; 193(1): 174-184, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30825159

RESUMO

The use of cisplatin (CP) in chemotherapy of resistant cancers is limited due to its dose-dependent nephrotoxicity. Disulfiram (DSF), the aversion therapy for alcoholism, has recently emerged as an anticancer and chemopreventive agent. Its anticancer activity is potentiated in the presence of copper. However, such use of copper leads to several adverse effects. In the present study, the protective effect of DSF and its copper chelate (Cu-DEDC) against CP-induced nephrotoxicity in rats was evaluated. Nephrotoxicity was induced by a single intraperitoneal injection of CP (5 mg/kg). The treatment groups included control (vehicle treated), CP (CP-treated), CP + DSF (CP followed by DSF), CP + DSF + Cu (CP followed by DSF and CuCl2), CP + Cu-DEDC (CP followed by Cu-DEDC), and CP + AMF (amifostine pre-treated and CP-treated). The DSF, Cu-DEDC, and CuCl2 were administered orally at 50 mM/kg/day dose for 5 days post CP injection. AMF served as a standard chemo protectant, administered intravenously 30 min prior to CP. The markers of oxidative stress, inflammation, and kidney function estimated on the 6th day revealed that both DSF and Cu-DEDC significantly attenuated the CP-induced rise in the serum/urine creatinine and blood urea nitrogen (BUN). The CP-induced rise in serum alkaline phosphatase (ALPase) was reversed by these drugs. Both drugs reduced the levels of malondialdehyde and nitric oxide (NO) in kidney tissues. These drugs reversed CP-induced depletion of SOD, catalase, and GSH in the kidneys. There was a significant reduction in the CP-induced TNF-α and IL-1ß production along with prevention of histological alterations. Above observations indicate that DSF and Cu-DEDC may have significance as adjuvants to protect against CP-induced nephrotoxicity.


Assuntos
Cisplatino/efeitos adversos , Cobre/farmacologia , Dissulfiram/farmacologia , Rim/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Insuficiência Renal , Animais , Nitrogênio da Ureia Sanguínea , Cisplatino/farmacologia , Creatinina/sangue , Rim/patologia , Masculino , Ratos , Ratos Wistar , Insuficiência Renal/sangue , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/tratamento farmacológico
8.
Int J Mol Sci ; 20(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491986

RESUMO

Inflammation is one of the common events in the majority of acute as well as chronic debilitating diseases and represent a chief cause of morbidity in today's era of modern lifestyle. If unchecked, inflammation leads to development of rheumatoid arthritis, diabetes, cancer, Alzheimer's disease, and atherosclerosis along with pulmonary, autoimmune and cardiovascular diseases. Inflammation involves a complex network of many mediators, a variety of cells, and execution of multiple pathways. Current therapy for inflammatory diseases is limited to the steroidal and non-steroidal anti-inflammatory agents. The chronic use of these drugs is reported to cause severe adverse effects like gastrointestinal, cardiovascular, and renal abnormalities. There is a massive need to explore new anti-inflammatory agents with selective action and lesser toxicity. Plants and isolated phytoconstituents are promising and interesting sources of new anti-inflammatories. However, drug development from natural sources has been linked with hurdles like the complex nature of extracts, difficulties in isolation of pure phytoconstituents, and the yield of isolated compounds in minute quantities that is insufficient for subsequent lead development. Although various in-vivo and in-vitro models for anti-inflammatory drug development are available, judicious selection of appropriate animal models is a vital step in the early phase of drug development. Systematic evaluation of phytoconstituents can facilitate the identification and development of potential anti-inflammatory leads from natural sources. The present review describes various techniques of anti-inflammatory drug screening with its advantages and limitations, elaboration on biological targets of phytoconstituents in inflammation and biomarkers for the prediction of adverse effects of anti-inflammatory drugs. The systematic approach proposed through present article for anti-inflammatory drug screening can rationalize the identification of novel phytoconstituents at the initial stage of drug screening programs.


Assuntos
Anti-Inflamatórios/farmacologia , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Animais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Biomarcadores , Desenvolvimento de Medicamentos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Modelos Animais , Terapia de Alvo Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
10.
Sci Rep ; 8(1): 13562, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202036

RESUMO

Despite the availability of multiple therapeutic agents, the search for novel pain management of neuropathic pain is still a challenge. Oxidative stress and inflammatory signaling are prominently involved in clinical manifestation of neuropathic pain. Toxicodendron pubescens, popularly known as Rhus Tox (RT) is recommended in alternative medicines as an anti-inflammatory and analgesic remedy. Earlier, we reported anti-inflammatory, anti-arthritic and immunomodulatory activities of Rhus Tox. In continuation, we evaluated antinociceptive efficacy of Rhus Tox in the neuropathic pain and delineated its underlying mechanism. Initially, in-vitro assay using LPS-mediated ROS-induced U-87 glioblastoma cells was performed to study the effect of Rhus Tox on reactive oxygen species (ROS), anti-oxidant status and cytokine profile. Rhus Tox decreased oxidative stress and cytokine release with restoration of anti-oxidant systems. Chronic treatment with Rhus Tox ultra dilutions for 14 days ameliorated neuropathic pain revealed as inhibition of cold, warm and mechanical allodynia along with improved motor nerve conduction velocity (MNCV) in constricted nerve. Rhus Tox decreased the oxidative and nitrosative stress by reducing malondialdehyde (MDA) and nitric oxide (NO) content, respectively along with up regulated glutathione (GSH), superoxide dismutase (SOD) and catalase activity in sciatic nerve of rats. Notably, Rhus Tox treatment caused significant reductions in the levels of tumor necrosis factor (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) as compared with CCI-control group. Protective effect of Rhus Tox against CCI-induced sciatic nerve injury in histopathology study was exhibited through maintenance of normal nerve architecture and inhibition of inflammatory changes. Overall, neuroprotective effect of Rhus Tox in CCI-induced neuropathic pain suggests the involvement of anti-oxidative and anti-inflammatory mechanisms.

11.
Chem Biol Interact ; 290: 6-11, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29752894

RESUMO

Cisplatin has been widely used as a first-line agent against various forms of solid cancers. However, nephrotoxicity is the major limiting factor for its clinical use. Several clinical and pre-clinical studies have suggested different strategies for the reduction of cisplatin-induced nephrotoxicity. The present study was conducted to investigate the efficacy of D-Pinitol, against cisplatin-induced nephrotoxicity in Swiss albino mice. A single intraperitoneal injection of cisplatin (20 mg/kg) was used to induce nephrotoxicity in mice. Administration of cisplatin in mice is linked with elevated oxidative stress, imbalanced biochemical parameters, apoptosis and stimulation of mitogen-activated protein kinase (MAPK) pathway. D-Pinitol is a member of the flavonoid family and a chief constituent of Sutherlandia fruitesecnce. It was administered with saline water (10, 20, 40 mg/kg, p.o.) for seven consecutive days after a single dose of cisplatin. At the end of experiment, animals were sacrificed and biochemical parameters in serum and urine were recorded. Kidneys were isolated for the estimation of tumor necrosis factor-alpha, interleukin-1ß, interlukin-6 levels and histopathological evaluations. It was noted that D-Pinitol significantly ameliorated biochemical levels of serum and urinary creatinine and blood urea nitrogen. Tissue homogenate levels of TNF-α, IL-6, IL-1ß and the renal expression of tissue nitrites were also significantly decreased in D-Pinitol treated mice. These results were supplemented by histopathological findings. This study highlights the potential role of D-Pinitol against cisplatin-induced toxicity, exhibited through favorable alterations in biochemical and histological changes as well as reduction in oxidative stress and cytokine levels.


Assuntos
Injúria Renal Aguda/prevenção & controle , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Citocinas/metabolismo , Inositol/análogos & derivados , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Catalase/metabolismo , Creatinina/sangue , Creatinina/urina , Glutationa/metabolismo , Inositol/farmacologia , Inositol/uso terapêutico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Rim/metabolismo , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Drug Des Devel Ther ; 11: 1567-1583, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579755

RESUMO

Loss of pancreatic ß-cell function is a hallmark of Type-II diabetes mellitus (DM). It is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. Recently, United Kingdom Prospective Diabetes Study reported that Type-II DM is a progressive disorder. Although, DM can be treated initially by monotherapy with oral agent; eventually, it may require multiple drugs. Additionally, insulin therapy is needed in many patients to achieve glycemic control. Pharmacological approaches are unsatisfactory in improving the consequences of insulin resistance. Single therapeutic approach in the treatment of Type-II DM is unsuccessful and usually a combination therapy is adopted. Increased understanding of biochemical, cellular and pathological alterations in Type-II DM has provided new insight in the management of Type-II DM. Knowledge of underlying mechanisms of Type-II DM development is essential for the exploration of novel therapeutic targets. Present review provides an insight into therapeutic targets of Type-II DM and their role in the development of insulin resistance. An overview of important signaling pathways and mechanisms in Type-II DM is provided for the better understanding of disease pathology. This review includes case studies of drugs that are withdrawn from the market. The experience gathered from previous studies and knowledge of Type-II DM pathways can guide the anti-diabetic drug development toward the discovery of clinically viable drugs that are useful in Type-II DM.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Descoberta de Drogas , Hipoglicemiantes/uso terapêutico , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Quimioterapia Combinada , Humanos , Hipoglicemiantes/efeitos adversos , Resistência à Insulina , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
13.
J Tradit Complement Med ; 7(1): 86-93, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28053892

RESUMO

The fruits of Barringtonia racemosa are traditionally used in Indian medicine for the treatment of pain and inflammatory conditions. In this study, a fraction of ethyl acetate extract of fruits of B. racemosa (BREAF) was investigated for anti-inflammatory activity in experimental models of acute and chronic inflammation. Activity against acute inflammation was evaluated in inflammogens induced rat paw edema models. Whereas, effect in chronic inflammation was evaluated in cotton pellet granuloma and oxazolone induced delayed type hypersensitivity (DTH) model in mice. The BREAF exhibited dose dependent anti-inflammatory activity in both acute and chronic models at oral doses of 5, 10 and 20 mg/kg. BREAF inhibited both phases of carrageenan induced rat paw inflammation. The reduction in paw inflammation by BREAF was also evident in histamine and serotonin induced inflammation in rats. Effect of BREAF on DTH indicates inhibition of immune mediated inflammation. The reduction in cotton pellet granuloma by BREAF treatment shows inhibition of proliferative changes associated with chronic inflammation. Analysis of BREAF after chromatographic separations showed presence of bartogenic acid as a major constituent. Hence, it is proposed that anti-inflammatory effects of BREAF can be partially attributed to its bartogenic acid content. The minute doses at which this fraction shows anti-inflammatory effects emphasizes the need for further investigations on its efficacy in the immuno-inflammatory conditions.

14.
J Cancer ; 7(14): 2139-2147, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877231

RESUMO

Barringtonia racemosa fruits are believed to be useful in cancer treatment in Ayurveda, the Indian system of medicine. In present study, bartogenic acid (BA), a triterpenoid constituent of Barringtonia fruits was evaluated for its cytotoxicity property using the human skin carcinoma cell line (SCC-13) and human peripheral blood mononuclear cells (PBMC). The chemopreventive efficacy of BA was evaluated against the DMBA/Croton oil-induced skin carcinogenesis in mice.BA was orally administered at the doses of 1, 2 or 4 mg/kg/day or applied topically every day for 12 weeks following DMBA application. The in vitro data from cell lines revealed that BA induces cytotoxicity against the SCC-13 cells (IC50=7.5 µM). It was found 4.05 times more selective to exert cytotoxicity against SCC-13 as compared to the PBMC (IC50=30.4 µM). The in vivo datacollected from mice model of DMBA/Croton oil-induced skin carcinogenesis revealed that BA administered orally or applied topically, both reduced the precancerous skin lesions andthe incidence of tumor bearing. The oral doses of BA (2 and 4 mg/kg) and topical treatment significantly reduced the incidence and number of skin papillomas. At these doses, BA also increased the activities of catalase and superoxide dismutase and induced an increase in glutathionecontent and inhibited lipid peroxidation in the skin. These findings reveal the chemopreventive efficacy of BA and also demonstrate that it contributes to the cytotoxic and antioxidative effects of Barringtonia racemosa fruits. The study also validates the traditional claims of Barringtonia fruits and provides a scientific basis of its chemopreventive property.

15.
Chem Biol Interact ; 244: 49-63, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26656244

RESUMO

Streptozotocin (STZ) has been extensively used over the last three decades to induce diabetes in various animal species and to help screen for hypoglycemic drugs. STZ induces clinical features in animals that resemble those associated with diabetes in humans. For this reason STZ treated animals have been used to study diabetogenic mechanisms and for preclinical evaluation of novel antidiabetic therapies. However, the physiochemical characteristics and associated toxicities of STZ are still major obstacles for researchers using STZ treated animals to investigate diabetes. Another major challenges in STZ-induced diabetes are sustaining uniformity, suitability, reproducibility and induction of diabetes with minimal animal lethality. Lack of appropriate use of STZ was found to be associated with increased mortality and animal suffering. During STZ use in animals, attention should be paid to several factors such as method of preparation of STZ, stability, suitable dose, route of administration, diet regimen, animal species with respect to age, body weight, gender and the target blood glucose level used to represent hyperglycemia. Therefore, protocol for STZ-induced diabetes in experimental animals must be meticulously planned. This review highlights specific skills and strategies involved in the execution of STZ-induced diabetes model. The present review aims to provide insight into diabetogenic mechanisms of STZ, specific toxicity of STZ with its significance and factors responsible for variations in diabetogenic effects of STZ. Further this review also addresses ways to minimize STZ-induced mortality, suggests methods to improve STZ-based experimental models and best utilize them for experimental studies purported to understand diabetes pathogenesis and preclinical evaluation of drugs.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/etiologia , Modelos Animais de Doenças , Hipoglicemiantes/uso terapêutico , Estreptozocina/efeitos adversos , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Humanos
16.
PLoS One ; 10(5): e0125709, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25938234

RESUMO

Pentacyclic Triterpenoids (PTs) and their analogues as well as derivatives are emerging as important drug leads for various diseases. They act through a variety of mechanisms and a majority of them inhibit the nuclear factor kappa-beta (NF-κB) signaling pathway. In this study, we examined the effects of the naturally occurring PTs on IκB kinase-ß (IKKß), which has great scientific relevance in the NF-κB signaling pathway. On virtual screening, 109 PTs were screened through the PASS (prediction of activity spectra of substances) software for prediction of NF-κB inhibitory activity followed by docking on the NEMO/IKKß association complex (PDB: 3BRV) and testing for compliance with the softened Lipinski's Rule of Five using Schrodinger (LLC, New York, USA). Out of the projected 45 druggable PTs, Corosolic Acid (CA), Asiatic Acid (AA) and Ursolic Acid (UA) were assayed for IKKß kinase activity in the cell free medium. The UA exhibited a potent IKKß inhibitory effect on the hotspot kinase assay with IC50 of 69 µM. Whereas, CA at 50 µM concentration markedly reduced the NF-κB luciferase activity and phospho-IKKß protein expressions. The PTs tested, attenuated the expression of the NF-κB cascade proteins in the LPS-stimulated RAW 264.7 cells, prevented the phosphorylation of the IKKα/ß and blocked the activation of the Interferon-gamma (IFN-γ). The results suggest that the IKKß inhibition is the major mechanism of the PTs-induced NF-κB inhibition. PASS predictions along with in-silico docking against the NEMO/IKKß can be successfully applied in the selection of the prospective NF-κB inhibitory downregulators of IKKß phosphorylation.


Assuntos
Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Triterpenos Pentacíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica , Genes Reporter , Humanos , Ligação de Hidrogênio , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/química , Interferon gama/biossíntese , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/química , Triterpenos Pentacíclicos/química , Ligação Proteica , Bibliotecas de Moléculas Pequenas
17.
J Pharmacol Pharmacother ; 4(1): 47-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23662024

RESUMO

OBJECTIVE: To study the effect of oleanolic acid (OA) on streptozotocin induced diabetic nephropathy in Sprague Dawley rats. MATERIALS AND METHODS: Four weeks after intra-peritoneal injection of streptozotocin (STZ; 55 mg/kg), the rats with proteinuria were grouped as: Control (non-diabetic, treated orally with vehicle), diabetic control (treated orally with vehicle) and three diabetic groups receiving 20, 40 and 60 mg/kg/day oral doses of OA. At the end of 8 weeks, urine and serum samples from the rats were processed for determination of creatinine, BUN and GFR. The kidney samples were processed for determination of weight changes, oxidative stress related parameters like catalase, superoxide dismutase and reduced glutathione levels. A part of one kidney from each rat was used for transmission electron microscopy (TEM). RESULT: As evident in TEM, OA inhibited the nephropathy induced alterations in podocyte integrity, basement membrane thickness and spacing between the podocytes at 60 mg/kg dose. It increased GFR and reduced oxidative stress in the kidneys in a dose dependent manner. These findings conclusively demonstrate the efficacy of OA in diabetic nephropathy. Significant decrease in the oxidative stress in kidneys indicates the role of anti-oxidant mechanisms in the effects of OA. However, OA is known to act through multiple mechanisms like inhibition of the generation of advanced glycation end products and improving the insulin secretion. These mechanisms might have contributed to its efficacy. CONCLUSION: These results conclusively demonstrate the efficacy of OA in diabetic nephropathy through its possible antioxidant activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...