Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 40(11): 2567-2584, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37523014

RESUMO

PURPOSE: The differences between intestinal and systemic (hepatic and renal) P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) roles in drug disposition are difficult to define. Accordingly, we characterized Encequidar (ECD) as an intestinal P-gp and BCRP specific inhibitor to evaluate their role in drug disposition. METHODS: We assessed the in vitro and in vivo inhibition potential of ECD towards human and animal P-gp and BCRP. RESULTS: ECD is a potent inhibitor with a high degree of selectivity in inhibiting human P-gp (hP-gp) over human BCRP (hBCRP) (IC50s of 0.0058 ± 0.0006 vs. > 10 µM, respectively). In contrast, ECD is a potent inhibitor of rat and cynomolgus monkey BCRP (IC50 ranged from 0.059 to 0.18 µM). While the AUC of IV paclitaxel (PTX) was significantly increased by elacridar (ELD) (P < 0.05) but not ECD in rats (15 mg/kg; PO) (2.55- vs. 0.93-fold), that of PO PTX was significantly elevated to a similar extent between the inhibitors (39.5- vs. 33.5-fold). Similarly, the AUC of PO sulfasalazine (SFZ) was dramatically increased by ELD and ECD (16.6- vs. 3.04-fold) although that of IV SFZ was not significantly affected by ELD and ECD in rats (1.18- vs. 1.06-fold). Finally, a comparable ECD-induced increase of the AUC of PO talinolol in cynomolgus monkeys was observed compared with ELD (2.14- vs. 2.12-fold). CONCLUSIONS: ECD may allow an in-depth appraisal of the role of intestinal efflux transporter(s) in drug disposition in animals and humans through local intestinal drug interactions.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Humanos , Ratos , Animais , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Macaca fascicularis/metabolismo , Proteínas de Neoplasias/metabolismo , Paclitaxel , Interações Medicamentosas
2.
Arch Oral Biol ; 85: 120-129, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29055230

RESUMO

OBJECTIVE: The aim of this study was to develop a chitosan-metformin based intrapocket dental film (CMIDF) for applications in the treatment of periodontitis and alveolar bone loss in an rat model of periodontitis. DESIGN: CMIDF inserts were fabricated by the solvent casting technique. The fabricated inserts were evaluated for physical characteristics such as folding endurance, surface pH, mucoadhesive strength, metformin content uniformity, and release. X-ray diffraction analysis indicates no crystallinity of metformin in presence of chitosan which confirmed successful entrapment of metformin into the CMIDF. Fourier-transform infrared spectroscopy revealed stability of CMIDF and compatibility between metformin and chitosan. Periodontitis was induced by a combination of Porphyromonas gingivalis- lipopolysaccharide injections in combinations with ligatures around the mandibular first molar. We divided rats into 5 groups (8 rats/group): healthy, untreated periodontitis; periodontitis plus CMIDF-A (1.99±0.09mg metformin; total mass-4.01±0.05mg), periodontitis plus CMIDF-B (2.07±0.06mg metformin; total mass-7.56±0.09mg), and periodontitis plus chitosan film (7.61±0.08mg). After four weeks, mandibles were extracted to evaluate alveolar bone loss by micro-computerized tomography and histological techniques. RESULTS: Alveolar bone was intact in the healthy group. Local administration of CMIDF resulted in significant improvements in the alveolar bone properties when compared to the untreated periodontitis group. The study reported here demonstrates that novel CMIDF showed good antibacterial activity and effectively reduced alveolar bone destruction in a rat model of experimental periodontitis. CONCLUSIONS: Novel CMIDF showed good antibacterial activity and improved alveolar bone properties in a rat model.


Assuntos
Perda do Osso Alveolar/tratamento farmacológico , Antibacterianos/farmacologia , Quitosana/farmacologia , Implantes de Medicamento , Metformina/farmacologia , Periodontite/tratamento farmacológico , Animais , Modelos Animais de Doenças , Masculino , Teste de Materiais , Microscopia Eletrônica de Varredura , Periodontite/microbiologia , Porphyromonas gingivalis , Ratos , Ratos Wistar , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA