Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(4): e0342223, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38488359

RESUMO

Diarrheagenic Escherichia coli, collectively known as DEC, is a leading cause of diarrhea, particularly in children in low- and middle-income countries. Diagnosing infections caused by different DEC pathotypes traditionally relies on the cultivation and identification of virulence genes, a resource-intensive and error-prone process. Here, we compared culture-based DEC identification with shotgun metagenomic sequencing of whole stool using 35 randomly drawn samples from a cohort of diarrhea-afflicted patients. Metagenomic sequencing detected the cultured isolates in 97% of samples, revealing, overall, reliable detection by this approach. Genome binning yielded high-quality E. coli metagenome-assembled genomes (MAGs) for 13 samples, and we observed that the MAG did not carry the diagnostic DEC virulence genes of the corresponding isolate in 60% of these samples. Specifically, two distinct scenarios were observed: diffusely adherent E. coli (DAEC) isolates without corresponding DAEC MAGs appeared to be relatively rare members of the microbiome, which was further corroborated by quantitative PCR (qPCR), and thus unlikely to represent the etiological agent in 3 of the 13 samples (~23%). In contrast, ETEC virulence genes were located on plasmids and largely escaped binning in associated MAGs despite being prevalent in the sample (5/13 samples or ~38%), revealing limitations of the metagenomic approach. These results provide important insights for diagnosing DEC infections and demonstrate how metagenomic methods can complement isolation efforts and PCR for pathogen identification and population abundance. IMPORTANCE: Diagnosing enteric infections based on traditional methods involving isolation and PCR can be erroneous due to isolation and other biases, e.g., the most abundant pathogen may not be recovered on isolation media. By employing shotgun metagenomics together with traditional methods on the same stool samples, we show that mixed infections caused by multiple pathogens are much more frequent than traditional methods indicate in the case of acute diarrhea. Further, in at least 8.5% of the total samples examined, the metagenomic approach reliably identified a different pathogen than the traditional approach. Therefore, our results provide a methodology to complement existing methods for enteric infection diagnostics with cutting-edge, culture-independent metagenomic techniques, and highlight the strengths and limitations of each approach.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Criança , Humanos , Escherichia coli/genética , Metagenoma , Infecções por Escherichia coli/epidemiologia , Diarreia/diagnóstico , Diarreia/epidemiologia , Virulência/genética
2.
mSystems ; 7(6): e0059522, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36448813

RESUMO

Long-read sequencing offers the potential to improve metagenome assemblies and provide more robust assessments of microbial community composition and function than short-read sequencing. We applied Pacific Biosciences (PacBio) CCS (circular consensus sequencing) HiFi shotgun sequencing to 14 marine water column samples and compared the results with those for short-read metagenomes from the corresponding environmental DNA samples. We found that long-read metagenomes varied widely in quality and biological information. The community compositions of the corresponding long- and short-read metagenomes were frequently dissimilar, suggesting higher stochasticity and/or bias associated with PacBio sequencing. Long reads provided few improvements to the assembly qualities, gene annotations, and prokaryotic metagenome-assembled genome (MAG) binning results. However, only long reads produced high-quality eukaryotic MAGs and contigs containing complete zooplankton marker gene sequences. These results suggest that high-quality long-read metagenomes can improve marine community composition analyses and provide important insight into eukaryotic phyto- and zooplankton genetics, but the benefits may be outweighed by the inconsistent data quality. IMPORTANCE Ocean microbes provide critical ecosystem services, but most remain uncultivated. Their communities can be studied through shotgun metagenomic sequencing and bioinformatic analyses, including binning draft microbial genomes. However, most sequencing to date has been done using short-read technology, which rarely yields genome sequences of key microbes like SAR11. Long-read sequencing can improve metagenome assemblies but is hampered by technological shortcomings and high costs. In this study, we compared long- and short-read sequencing of marine metagenomes. We found a wide range of long-read metagenome qualities and minimal improvements to microbiome analyses. However, long reads generated draft genomes of eukaryotic algal species and provided full-length marker gene sequences of zooplankton species, including krill and copepods. These results suggest that long-read sequencing can provide greater genetic insight into the wide diversity of eukaryotic phyto- and zooplankton that interact as part of and with the marine microbiome.


Assuntos
Metagenoma , Microbiota , Animais , Metagenoma/genética , Zooplâncton/genética , Microbiota/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Microbiano
5.
ISME J ; 15(8): 2206-2232, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33612832

RESUMO

Exploration of oxygen-depleted marine environments has consistently revealed novel microbial taxa and metabolic capabilities that expand our understanding of microbial evolution and ecology. Marine blue holes are shallow karst formations characterized by low oxygen and high organic matter content. They are logistically challenging to sample, and thus our understanding of their biogeochemistry and microbial ecology is limited. We present a metagenomic and geochemical characterization of Amberjack Hole on the Florida continental shelf (Gulf of Mexico). Dissolved oxygen became depleted at the hole's rim (32 m water depth), remained low but detectable in an intermediate hypoxic zone (40-75 m), and then increased to a secondary peak before falling below detection in the bottom layer (80-110 m), concomitant with increases in nutrients, dissolved iron, and a series of sequentially more reduced sulfur species. Microbial communities in the bottom layer contained heretofore undocumented levels of the recently discovered phylum Woesearchaeota (up to 58% of the community), along with lineages in the bacterial Candidate Phyla Radiation (CPR). Thirty-one high-quality metagenome-assembled genomes (MAGs) showed extensive biochemical capabilities for sulfur and nitrogen cycling, as well as for resisting and respiring arsenic. One uncharacterized gene associated with a CPR lineage differentiated hypoxic from anoxic zone communities. Overall, microbial communities and geochemical profiles were stable across two sampling dates in the spring and fall of 2019. The blue hole habitat is a natural marine laboratory that provides opportunities for sampling taxa with under-characterized but potentially important roles in redox-stratified microbial processes.


Assuntos
Archaea , Metagenômica , Bactérias/genética , Florida , Golfo do México
6.
mBio ; 11(6)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203758

RESUMO

Norovirus infections take a heavy toll on worldwide public health. While progress has been made toward understanding host responses to infection, the role of the gut microbiome in determining infection outcome is unknown. Moreover, data are lacking on the nature and duration of the microbiome response to norovirus infection, which has important implications for diagnostics and host recovery. Here, we characterized the gut microbiomes of subjects enrolled in a norovirus challenge study. We analyzed microbiome features of asymptomatic and symptomatic individuals at the genome (population) and gene levels and assessed their response over time in symptomatic individuals. We show that the preinfection microbiomes of subjects with asymptomatic infections were enriched in Bacteroidetes and depleted in Clostridia relative to the microbiomes of symptomatic subjects. These compositional differences were accompanied by differences in genes involved in the metabolism of glycans and sphingolipids that may aid in host resilience to infection. We further show that microbiomes shifted in composition following infection and that recovery times were variable among human hosts. In particular, Firmicutes increased immediately following the challenge, while Bacteroidetes and Proteobacteria decreased over the same time. Genes enriched in the microbiomes of symptomatic subjects, including the adenylyltransferase glgC, were linked to glycan metabolism and cell-cell signaling, suggesting as-yet unknown roles for these processes in determining infection outcome. These results provide important context for understanding the gut microbiome role in host susceptibility to symptomatic norovirus infection and long-term health outcomes.IMPORTANCE The role of the human gut microbiome in determining whether an individual infected with norovirus will be symptomatic is poorly understood. This study provides important data on microbes that distinguish asymptomatic from symptomatic microbiomes and links these features to infection responses in a human challenge study. The results have implications for understanding resistance to and treatment of norovirus infections.


Assuntos
Bacteroidetes/crescimento & desenvolvimento , Infecções por Caliciviridae/prevenção & controle , Firmicutes/crescimento & desenvolvimento , Microbioma Gastrointestinal , Norovirus/imunologia , Proteobactérias/crescimento & desenvolvimento , Doenças Assintomáticas , Bacteroidetes/genética , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Suscetibilidade a Doenças , Firmicutes/genética , Humanos , Metagenômica , Proteobactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...