Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 16: 917181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936502

RESUMO

Dax-1 (dosage-sensitive sex reversal adrenal hypoplasia congenital region on X-chromosome gene 1) blocks 17ß-estradiol biosynthesis and its knockdown would be expected to increase 17ß-estradiol production. We hypothesized that knockdown of Dax-1 in a conditionally immortalized neural stem cell (NSC) line, MHP36, is a useful approach to increase 17ß-estradiol production. Short hairpin (sh) RNA targeted to Dax-1 in NSCs, namely MHP36-Dax1KD cells, resulted in the degradation of Dax-1 RNA and attenuation of Dax-1 protein expression. In vitro, MHP36-Dax1KD cells exhibited overexpression of aromatase and increased 17ß-estradiol secretion compared to MHP36 cells. As 17ß-estradiol has been shown to promote the efficacy of cell therapy, we interrogated the application of 17ß-estradiol-enriched NSCs in a relevant in vivo disease model. We hypothesized that MHP36-Dax1KD cells will enhance functional recovery after transplantation in a stroke model. C57BL/6 male adult mice underwent ischemia/reperfusion by left middle cerebral artery occlusion for 45 min using an intraluminal thread. Two days later male mice randomly received vehicle, MHP36 cells, MHP36-Dax1KD cells, and MHP36 cells suspended in 17ß-estradiol (100 nm) or 17ß-estradiol alone (100 nm) with serial behavioral testing over 28 days followed by post-mortem histology and blinded analysis. Recovery of sensorimotor function was accelerated and enhanced, and lesion volume was reduced by MHP36-Dax1KD transplants. Regarding mechanisms, immunofluorescence indicated increased synaptic plasticity and neuronal differentiation after MHP36-Dax1KD transplants. In conclusion, knockdown of Dax-1 is a useful target to increase 17ß-estradiol biosynthesis in NSCs and improves functional recovery after stroke in vivo, possibly mediated through neuroprotection and improved synaptic plasticity. Therefore, targeting 17ß-estradiol biosynthesis in stem cells may be a promising therapeutic strategy for enhancing the efficacy of stem cell-based therapies for stroke.

2.
Fluids Barriers CNS ; 19(1): 6, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033138

RESUMO

BACKGROUND: Ways to prevent disease-induced vascular modifications that accelerate brain damage remain largely elusive. Improved understanding of perivascular cell signalling could provide unparalleled insight as these cells impact vascular stability and functionality of the neurovascular unit as a whole. Identifying key drivers of astrocyte and pericyte responses that modify cell-cell interactions and crosstalk during injury is key. At the cellular level, injury-induced outcomes are closely entwined with activation of the hypoxia-inducible factor-1 (HIF-1) pathway. Studies clearly suggest that endothelial HIF-1 signalling increases blood-brain barrier permeability but the influence of perivascular HIF-1 induction on outcome is unknown. Using novel mouse lines with astrocyte and pericyte targeted HIF-1 loss of function, we herein show that vascular stability in vivo is differentially impacted by perivascular hypoxia-induced HIF-1 stabilization. METHODS: To facilitate HIF-1 deletion in adult mice without developmental complications, novel Cre-inducible astrocyte-targeted (GFAP-CreERT2; HIF-1αfl/fl and GLAST-CreERT2; HIF-1αfl/fl) and pericyte-targeted (SMMHC-CreERT2; HIF-1αfl/fl) transgenic animals were generated. Mice in their home cages were exposed to either normoxia (21% O2) or hypoxia (8% O2) for 96 h in an oxygen-controlled humidified glove box. All lines were similarly responsive to hypoxic challenge and post-Cre activation showed significantly reduced HIF-1 target gene levels in the individual cells as predicted. RESULTS: Unexpectedly, hypoxia-induced vascular remodelling was unaffected by HIF-1 loss of function in the two astrocyte lines but effectively blocked in the pericyte line. In correlation, hypoxia-induced barrier permeability and water accumulation were abrogated only in pericyte targeted HIF-1 loss of function mice. In contrast to expectation, brain and serum levels of hypoxia-induced VEGF, TGF-ß and MMPs (genes known to mediate vascular remodelling) were unaffected by HIF-1 deletion in all lines. However, in agreement with the permeability data, immunofluorescence and electron microscopy showed clear prevention of hypoxia-induced tight junction disruption in the pericyte loss of function line. CONCLUSION: This study shows that pericyte but not astrocyte HIF-1 stabilization modulates endothelial tight junction functionality and thereby plays a pivotal role in hypoxia-induced vascular dysfunction. Whether the cells respond similarly or differentially to other injury stimuli will be of significant relevance.


Assuntos
Astrócitos/metabolismo , Permeabilidade Capilar/fisiologia , Córtex Cerebral/metabolismo , Endotélio Vascular/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Pericitos/metabolismo , Animais , Camundongos , Camundongos Transgênicos
3.
Fluids Barriers CNS ; 12: 4, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25879623

RESUMO

BACKGROUND: Undisturbed functioning of the blood-brain barrier (BBB) crucially depends on paracellular signaling between its associated cells; particularly endothelial cells, pericytes and astrocytes. Hypoxic and ischemic injuries are closely associated with disturbed BBB function and the contribution of perivascular cells to hypoxic/ischemic barrier regulation has gained increased attention. Regardless, detailed information on the basal hypoxic/ischemic responses of the barrier-associated cells is rare and the outcome of such cell-specific responses on BBB modulation is not well understood. This study investigated crucial parameters of hypoxic/ischemic adaptation in order to characterize individual perivascular cell responses to stress conditions. METHODS: The brain microvascular endothelial cell line RBE4 (EC cell line) as well as primary rat brain endothelial cells (ECs), pericytes (PCs) and astrocytes (ACs) were exposed to 24 and 48 hours of oxygen deprivation at 1% and 0.2% O2. All primary cells were additionally subjected to combined oxygen and glucose deprivation mimicking ischemia. Central parameters of cellular adaptation and state, such as HIF-1α and HIF-1 target gene induction, actin cytoskeletal architecture, proliferation and cell viability, were compared between the cell types. RESULTS: We show that endothelial cells exhibit greater responsiveness and sensitivity to oxygen deprivation than ACs and PCs. This higher sensitivity coincided with rapid and significant stabilization of HIF-1α and its downstream targets (VEGF, GLUT-1, MMP-9 and PHD2), early disruption of the actin cytoskeleton and metabolic impairment in conditions where the perivascular cells remain largely unaffected. Additional adaptation (suppression) of proliferation also likely contributes to astrocytic and pericytic tolerance during severe injury conditions. Moreover, unlike the perivascular cells, ECs were incapable of inducing autophagy (monitored via LC3-II and Beclin-1 expression) - a putative protective mechanism. Notably, both ACs and PCs were significantly more susceptible to glucose than oxygen deprivation with ACs proving to be most resistant overall. CONCLUSION: In summary this work highlights considerable differences in sensitivity to hypoxic/ischemic injury between microvascular endothelial cells and the perivascular cells. This can have marked impact on barrier stability. Such fundamental knowledge provides an important foundation to better understand the complex cellular interactions at the BBB both physiologically and in injury-related contexts in vivo.


Assuntos
Adaptação Fisiológica , Barreira Hematoencefálica/fisiopatologia , Isquemia Encefálica/fisiopatologia , Hipóxia Encefálica/fisiopatologia , Actinas/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/fisiologia , Autofagia , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Hipóxia Celular , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Expressão Gênica , Hipóxia Encefálica/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pericitos/metabolismo , Pericitos/fisiologia , Ratos
4.
Stem Cell Res ; 8(1): 14-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22099017

RESUMO

Cell therapy has enormous potential to restore neurological function after stroke. The present study investigated effects of conditionally immortalised neural stem cells (ciNSCs), the Maudsley hippocampal murine neural stem cell line clone 36 (MHP36), on sensorimotor and histological outcome in mice subjected to transient middle cerebral artery occlusion (MCAO). Adult male C57BL/6 mice underwent MCAO by intraluminal thread or sham surgery and MHP36 cells or vehicle were implanted into ipsilateral cortex and caudate 2 days later. Functional recovery was assessed for 28 days using cylinder and ladder rung tests and tissue analysed for plasticity, differentiation and infarct size. MHP36-implanted animals showed accelerated and augmented functional recovery and an increase in neurons (MAP-2), synaptic plasticity (synaptophysin) and axonal projections (GAP-43) but no difference in astrocytes (GFAP), oligodendrocytes (CNPase), microglia (IBA-1) or lesion volumes when compared to vehicle group. This is the first study showing a potential functional benefit of the ciNSCs, MHP36, after focal MCAO in mice, which is probably mediated by promoting neuronal differentiation, synaptic plasticity and axonal projections and opens up opportunities for future exploitation of genetically altered mice for dissection of mechanisms of stem cell based therapy.


Assuntos
Ataque Isquêmico Transitório/fisiopatologia , Ataque Isquêmico Transitório/terapia , Células-Tronco Neurais/citologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Transplante de Células-Tronco , Animais , Axônios/metabolismo , Axônios/patologia , Comportamento Animal , Infarto Encefálico/complicações , Infarto Encefálico/fisiopatologia , Infarto Encefálico/terapia , Linhagem Celular Transformada , Ataque Isquêmico Transitório/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Sinapses/metabolismo , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...