Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Liver Cancer ; 11(6): 540-557, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36589727

RESUMO

Introduction: Heparin sulphate proteoglycans in the liver tumour microenvironment (TME) are key regulators of cell signalling, modulated by sulfatase-2 (SULF2). SULF2 overexpression occurs in hepatocellular carcinoma (HCC). Our aims were to define the nature and impact of SULF2 in the HCC TME. Methods: In liver biopsies from 60 patients with HCC, expression and localization of SULF2 were analysed associated with clinical parameters and outcome. Functional and mechanistic impacts were assessed with immunohistochemistry (IHC), in silico using The Cancer Genome Atlas (TGCA), in primary isolated cancer activated fibroblasts, in monocultures, in 3D spheroids, and in an independent cohort of 20 patients referred for sorafenib. IHC targets included αSMA, glypican-3, ß-catenin, RelA-P-ser536, CD4, CD8, CD66b, CD45, CD68, and CD163. SULF2 impact of peripheral blood mononuclear cells was assessed by migration assays, with characterization of immune cell phenotype using fluorescent activated cell sorting. Results: We report that while SULF2 was expressed in tumour cells in 15% (9/60) of cases, associated with advanced tumour stage and type 2 diabetes, SULF2 was more commonly expressed in cancer-associated fibroblasts (CAFs) (52%) and independently associated with shorter survival (7.2 vs. 29.2 months, p = 0.003). Stromal SULF2 modulated glypican-3/ß-catenin signalling in vitro, although in vivo associations suggested additional mechanisms underlying the CAF-SULF2 impact on prognosis. Stromal SULF2 was released by CAFS isolated from human HCC. It was induced by TGFß1, promoted HCC proliferation and sorafenib resistance, with CAF-SULF2 linked to TGFß1 and immune exhaustion in TGCA HCC patients. Autocrine activation of PDGFRß/STAT3 signalling was evident in stromal cells, with the release of the potent monocyte/macrophage chemoattractant CCL2 in vitro. In human PBMCs, SULF2 preferentially induced the migration of macrophage precursors (monocytes), inducing a phenotypic change consistent with immune exhaustion. In human HCC tissues, CAF-SULF2 was associated with increased macrophage recruitment, with tumouroid studies showing stromal-derived SULF2-induced paracrine activation of the IKKß/NF-κB pathway, tumour cell proliferation, invasion, and sorafenib resistance. Conclusion: SULF2 derived from CAFs modulates glypican-3/ß-catenin signalling but also the HCC immune TME, associated with tumour progression and therapy resistance via activation of the TAK1/IKKß/NF-κB pathway. It is an attractive target for combination therapies for patients with HCC.

2.
Sci Rep ; 11(1): 16727, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408183

RESUMO

The prevalence of obesity and non-alcoholic fatty liver disease (NAFLD) associated hepatocellular carcinoma (HCC) is rising, even in the absence of cirrhosis. We aimed to develop a murine model that would facilitate further understanding of NAFLD-HCC pathogenesis. A total of 144 C3H/He mice were fed either control or American lifestyle (ALIOS) diet, with or without interventions, for up to 48 weeks of age. Gross, liver histology, immunohistochemistry (IHC) and RNA-sequencing data were interpreted alongside human datasets. The ALIOS diet promoted obesity, elevated liver weight, impaired glucose tolerance, non-alcoholic fatty liver disease (NAFLD) and spontaneous HCC. Liver weight, fasting blood glucose, steatosis, lobular inflammation and lipogranulomas were associated with development of HCC, as were markers of hepatocyte proliferation and DNA damage. An antioxidant diminished cellular injury, fibrosis and DNA damage, but not lobular inflammation, lipogranulomas, proliferation and HCC development. An acquired CD44 phenotype in macrophages was associated with type 2 diabetes and NAFLD-HCC. In this diet induced NASH and HCC (DINAH) model, key features of obesity associated NAFLD-HCC have been reproduced, highlighting roles for hepatic steatosis and proliferation, with the acquisition of lobular inflammation and CD44 positive macrophages in the development of HCC-even in the absence of progressive injury and fibrosis.


Assuntos
Carcinoma Hepatocelular , Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica/efeitos adversos , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Idoso , Animais , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Complicações do Diabetes/epidemiologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/epidemiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
3.
Diabetes Obes Metab ; 19(8): 1078-1087, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28206714

RESUMO

AIM: Small molecule activators of glucokinase (GKAs) have been explored extensively as potential anti-hyperglycaemic drugs for type 2 diabetes (T2D). Several GKAs were remarkably effective in lowering blood glucose during early therapy but then lost their glycaemic efficacy chronically during clinical trials. MATERIALS AND METHODS: We used rat hepatocytes to test the hypothesis that GKAs raise hepatocyte glucose 6-phosphate (G6P, the glucokinase product) and down-stream metabolites with consequent repression of the liver glucokinase gene ( Gck). We compared a GKA with metformin, the most widely prescribed drug for T2D. RESULTS: Treatment of hepatocytes with 25 mM glucose raised cell G6P, concomitantly with Gck repression and induction of G6pc (glucose 6-phosphatase) and Pklr (pyruvate kinase). A GKA mimicked high glucose by raising G6P and fructose-2,6-bisphosphate, a regulatory metabolite, causing a left-shift in glucose responsiveness on gene regulation. Fructose, like the GKA, repressed Gck but modestly induced G6pc. 2-Deoxyglucose, which is phosphorylated by glucokinase but not further metabolized caused Gck repression but not G6pc induction, implicating the glucokinase product in Gck repression. Metformin counteracted the effect of high glucose on the elevated G6P and fructose 2,6-bisphosphate and on Gck repression, recruitment of Mlx-ChREBP to the G6pc and Pklr promoters and induction of these genes. CONCLUSIONS: Elevation in hepatocyte G6P and downstream metabolites, with consequent liver Gck repression, is a potential contributing mechanism to the loss of GKA efficacy during chronic therapy. Cell metformin loads within the therapeutic range attenuate the effect of high glucose on G6P and on glucose-regulated gene expression.


Assuntos
Ativadores de Enzimas/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucoquinase/metabolismo , Hepatócitos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Tiazóis/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Dieta Ocidental/efeitos adversos , Frutose/administração & dosagem , Frutose/efeitos adversos , Frutosedifosfatos/metabolismo , Glucoquinase/antagonistas & inibidores , Glucoquinase/química , Glucoquinase/genética , Glucose-6-Fosfatase/antagonistas & inibidores , Glucose-6-Fosfatase/química , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Glucose-6-Fosfato/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Camundongos Endogâmicos C3H , Sobrepeso/enzimologia , Sobrepeso/metabolismo , Sobrepeso/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/química , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Ratos Wistar
5.
Nat Rev Gastroenterol Hepatol ; 13(2): 62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26726032
12.
Nat Rev Gastroenterol Hepatol ; 12(10): 551, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26347160
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...