Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 46(5): 5235-5245, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38809391

RESUMO

Heme is an essential prosthetic group that serves as a co-factor and a signaling molecule. Heme levels decline with age, and its deficiency is associated with multiple hallmarks of aging, including anemia, mitochondrial dysfunction, and oxidative stress. Dysregulation of heme homeostasis has been also implicated in aging in model organisms suggesting that heme may play an evolutionarily conserved role in controlling lifespan. However, the underlying mechanisms and whether heme homeostasis can be targeted to promote healthy aging remain unclear. Here, we used Saccharomyces cerevisiae as a model to investigate the role of heme in aging. For this, we have engineered a heme auxotrophic yeast strain expressing a plasma membrane-bound heme permease from Caenorhabditis elegans (ceHRG-4). This system can be used to control intracellular heme levels independently of the biosynthetic enzymes by manipulating heme concentration in the media. We observed that heme supplementation leads to a significant extension of yeast replicative lifespan. Our findings revealed that the effect of heme on lifespan is independent of the Hap4 transcription factor. Surprisingly, heme-supplemented cells had impaired growth on YPG medium, which requires mitochondrial respiration to be used, suggesting that these cells are respiratory deficient. Together, our results demonstrate that heme homeostasis is fundamentally important for aging biology, and manipulating heme levels can be used as a promising therapeutic target for promoting longevity.


Assuntos
Heme , Longevidade , Saccharomyces cerevisiae , Transdução de Sinais , Heme/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Longevidade/fisiologia , Transdução de Sinais/fisiologia , Animais , Caenorhabditis elegans , Homeostase/fisiologia , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estresse Oxidativo/fisiologia
2.
iScience ; 27(6): 109868, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38779483

RESUMO

Iron serves as a cofactor for enzymes involved in several steps of protein translation, but the control of translation during iron limitation is not understood at the molecular level. Here, we report a genome-wide analysis of protein translation in response to iron deficiency in yeast using ribosome profiling. We show that iron depletion affects global protein synthesis and leads to translational repression of multiple genes involved in iron-related processes. Furthermore, we demonstrate that the RNA-binding proteins Cth1 and Cth2 play a central role in this translational regulation by repressing the activity of the iron-dependent Rli1 ribosome recycling factor and inhibiting mitochondrial translation and heme biosynthesis. Additionally, we found that iron deficiency represses MRS3 mRNA translation through increased expression of antisense long non-coding RNA. Together, our results reveal complex gene expression and protein synthesis remodeling in response to low iron, demonstrating how this important metal affects protein translation at multiple levels.

3.
bioRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38293148

RESUMO

Heme is an essential prosthetic group that serves as a co-factor and a signaling molecule. Heme levels decline with age, and its deficiency is associated with multiple hallmarks of aging, including anemia, mitochondrial dysfunction, and oxidative stress. Dysregulation of heme homeostasis has been also implicated in aging in model organisms suggesting that heme may play an evolutionarily conserved role in controlling lifespan. However, the underlying mechanisms and whether heme homeostasis can be targeted to promote healthy aging remain unclear. Here we used Saccharomyces cerevisiae as a model to investigate the role of heme in aging. For this, we have engineered a heme auxotrophic yeast strain expressing a plasma membrane-bound heme permease from Caenorhabditis elegans (ceHRG-4). This system can be used to control intracellular heme levels independently of the biosynthetic enzymes by manipulating heme concentration in the media. We observed that heme supplementation leads to significant lifespan extension in yeast. Our findings revealed that the effect of heme on lifespan is independent of the Hap4 transcription factor. Surprisingly, heme-supplemented cells had impaired growth on YPG medium, which requires mitochondrial respiration to be used, suggesting that these cells are respiratory deficient. Together, our results demonstrate that heme homeostasis is fundamentally important for aging biology and manipulating heme levels can be used as a promising therapeutic target for promoting longevity.

4.
STAR Protoc ; 5(1): 102807, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38165801

RESUMO

Here, we present a protocol for modulating the function of the Cth2 mRNA-binding protein (RBP) in Saccharomyces cerevisiae. We describe steps to amplify and integrate mutations in Cth2 that affect its stability and function. Next, we detail the functional assay to verify the activity of the wild-type and mutant versions of Cth2 in yeast cells. This protocol can be adopted to modify the function of other RBPs with their respective functional mutations. For complete details on the use and execution of this protocol, please refer to Patnaik et al. (2022).1.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo , Ferro/metabolismo
5.
Cell Rep ; 40(3): 111113, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858543

RESUMO

Iron dyshomeostasis contributes to aging, but little information is available about the molecular mechanisms. Here, we provide evidence that in Saccharomyces cerevisiae, aging is associated with altered expression of genes involved in iron homeostasis. We further demonstrate that defects in the conserved mRNA-binding protein Cth2, which controls stability and translation of mRNAs encoding iron-containing proteins, increase lifespan by alleviating its repressive effects on mitochondrial function. Mutation of the conserved cysteine residue in Cth2 that inhibits its RNA-binding activity is sufficient to confer longevity, whereas Cth2 gain of function shortens replicative lifespan. Consistent with its function in RNA degradation, Cth2 deficiency relieves Cth2-mediated post-transcriptional repression of nuclear-encoded components of the electron transport chain. Our findings uncover a major role of the RNA-binding protein Cth2 in the regulation of lifespan and suggest that modulation of iron starvation signaling can serve as a target for potential aging interventions.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Tristetraprolina/metabolismo , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Longevidade , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tristetraprolina/genética
6.
Front Genet ; 7: 175, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746811

RESUMO

Apoptosis, a form of programmed cell death, is a highly regulated process, the deregulation of which has been associated with the tumor initiation, progression, and metastasis in various cancers including breast cancer. Induction of apoptosis is a popular target of various therapies currently being tested or used for breast cancer treatment. Thus, identifying apoptotic mediators and regulators is imperative for molecular biologists and clinicians for benefit of patients. The regulation of apoptosis is complex and involves a tight equilibrium between the pro- and anti-apoptotic factors. Recent studies have highlighted the role of miRNAs in the control of apoptosis and their interplay with p53, the master guardian of apoptosis. Here, we summarize and integrate the data on the role of miRNAs in apoptosis in breast cancer and the clinical advantage it may offer for the prognosis or treatment of breast cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA