Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 18664, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545161

RESUMO

India produces around 19.0 million tonnes of tomatoes annually, which is insufficient to meet the ever-increasing demand. A big gap of tomato productivity (72.14 t ha-1) between India (24.66 t ha-1) and the USA (96.8 t ha-1) exist, which can be bridged by integrating trellis system of shoot training, shoot pruning, liquid fertilizers, farmyard manure, and mulching technologies. Therefore, the present experiment was conducted on tomato (cv. Himsona) during 2019-2020 at farmers' fields to improve tomato productivity and quality. There were five treatments laid in a randomized block design (RBD) with three replications; T1 [Farmer practice on the flatbed with RDF @ N120:P60:K60 + FYM @6.0 t ha-1 without mulch], T2 [T1 + Polythene mulch (50 microns)], T3 [Tomato plants grown on the raised bed with polythene mulch + FYM @ 8.0 t ha-1 + Single shoot trellis system + Side shoot pruning + Liquid Fertilizer (LF1-N19:P19:K19) @ 2.0 g l-1 for vegetative growth + Liquid Fertilizer (LF2-N0: P52: K34) @ 1.5 g l-1 for improving fruit quality], T4 [Tomato plants grown on the raised bed with polythene mulch + FYM @ 8.0 t ha-1 + Single shoot trellis system + Side shoot pruning + LF1 @ 4.0 g l-1 + LF2 @ 3.0 g l-1], and T5 [Tomato plants grown on the raised bed with polythene mulch + FYM @ 10.0 t ha-1 + Single shoot trellis system + Side shoot pruning + LF1 @ 6.0 g l-1 + LF2 @ 4.5 g l-1]. The results revealed that tomato plant grown on the raised beds with polythene mulch, shoot pruning, trellising, liquid fertilizers, and farmyard manure (i.e., T5) recorded higher shoot length, dry matter content, and tomato productivity by 20.75-141.21, 18.79-169.4, and 18.89-160.87% as compared to T4-T1 treatments, respectively. The T5 treatment also recorded the highest water productivity (28.39 kg m-3), improved fruit qualities, net return (10,751 USD ha-1), benefit-cost ratio (3.08), microbial population, and enzymatic activities as compared to other treatments. The ranking and hierarchical clustering of treatments confirmed the superiority of the T5 treatment over all other treatments.


Assuntos
Agricultura/métodos , Fertilizantes/análise , Solanum lycopersicum/metabolismo , Carbono/análise , Produtos Agrícolas/crescimento & desenvolvimento , Frutas/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Índia , Solanum lycopersicum/crescimento & desenvolvimento , Solo/química
2.
Sci Total Environ ; 788: 147800, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34029812

RESUMO

Climate change models predict an increase in rainfall variability, leading to floods and drought events, hence intensifying the need for reservoirs. However, up to 50% of reservoirs' capacity is lost by evaporation, affecting their function of ensuring water availability and stability. Over decades biological, chemical and physical barriers "covers" were developed for inhibiting evaporation. Such barrier's efficiency and applicability are still a matter of discussion, given their economic efficiency, environmental consequences, and operational difficulties are accounted for. In this review, we discussed the efficiency, applicability, and environmental suitability of these covers. Compared to the physical covers, the chemical and biological solutions tend to be less efficient. However, the use of physical covers is multidisciplinary, involving climate, material, and hydrological sciences, and are more efficient. Among the physical covers, the use of suspended covers and free-floating elements decreases evaporation to the tune of 85 and 80.0%, respectively. However, the economic efficiency of free-floating elements remains an open question since all studies overlooked their water footprint (water used in the manufacturing process of these covers), which was found to be very high. The use of these covers decreases heat storage, gas exchange rate, and light availability that could adversely influence dissolved oxygen, water quality, aquatic organisms, and the water ecosystem's function. These ecological consequences have not yet been investigated. The exception is the suspended covers, which have had determinate effects on dissolved oxygen and algae growth. Due to light weight, floating elements' operation is unstable and vulnerable to move due to wind effects. Therefore, such covers must be engineered to increase their stability. Free-floating elements could provide a visible and scalable solution to evaporation suppression when considering their economic visibility, environmental effects, and stability against wind and wave effects under the field conditions. However, these covers can be viable only when water availability is the limiting factor in crop production. We found that studies at reservoir scale are highly limited, therefore, investigations at reservoirs' scale emphasizing ecological aspects, cover stability and cost efficiency, are urgently needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...