Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406827

RESUMO

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Assuntos
Canabidiol , Neoplasias , Humanos , Cisplatino/toxicidade , Canabidiol/farmacologia , Canabidiol/metabolismo , Canabidiol/uso terapêutico , Caquexia/metabolismo , Catalase/metabolismo , Qualidade de Vida , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Atrofia Muscular/tratamento farmacológico , Estresse Oxidativo , Neoplasias/metabolismo , RNA Mensageiro/metabolismo
2.
J Physiol Biochem ; 80(2): 287-302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38175500

RESUMO

Previous studies in Western diet (WD)-fed male rats have highlighted a link between the stimulation of cardiac contractility, mitochondrial adaptations and a pro-inflammatory fatty acid profile of phospholipids in the heart. Our objectives were to determine (1) if WD-fed female Wistar rats and obese humans display a similar pro-inflammatory profile in their cardiac phospholipids and (2) if this lipid profile is associated with deleterious effects on the heart of the female rodents. Female Wistar rats were fed WD for 5 weeks or a laboratory chow as a control. Ionic homeostasis, redox status, inflammation markers, and fatty acid composition of phospholipids were analysed in the heart. WD increased the abdominal fat mass without modifying the body weight of female rats. As previously found in males, a WD induced a shift in membrane fatty acid composition toward a pro-inflammatory profile in the female rats, but not in obese humans. It was associated with an increased COX2 expression suggesting an increased pro-inflammatory eicosanoid production. Signs of increased intracellular calcium strongly supported a stimulation of cardiac contractility without any induction of apoptosis. The heart of WD-fed rats exhibited a hypoxic state as a higher HIF1-α expression was reported. The expressions of antioxidant enzymes were increased, but the redox reserves against reactive oxygen species were lowered. In conclusion, as previously observed in males, we suppose that cardiac abnormalities are magnified with severe obesity in female rats, leading to hypoxia and intense oxidative stress which could ultimately induce cell death and heart failure.


Assuntos
Dieta Ocidental , Hipóxia , Contração Miocárdica , Ratos Wistar , Animais , Feminino , Dieta Ocidental/efeitos adversos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Miocárdio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ratos , Ciclo-Oxigenase 2/metabolismo , Estresse Oxidativo , Fosfolipídeos/metabolismo , Obesidade/metabolismo , Obesidade/etiologia , Obesidade/fisiopatologia , Modelos Animais de Doenças , Masculino , Humanos
3.
Nutrients ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686798

RESUMO

Aging is associated with a decline in muscle mass and function, leading to increased risk for mobility limitations and frailty. Dietary interventions incorporating specific nutrients, such as pea proteins or inulin, have shown promise in attenuating age-related muscle loss. This study aimed to investigate the effect of pea proteins given with inulin on skeletal muscle in old rats. Old male rats (20 months old) were randomly assigned to one of two diet groups for 16 weeks: a 'PEA' group receiving a pea-protein-based diet, or a 'PEA + INU' group receiving the same pea protein-based diet supplemented with inulin. Both groups showed significant postprandial stimulation of muscle p70 S6 kinase phosphorylation rate after consumption of pea proteins. However, the PEA + INU rats showed significant preservation of muscle mass with time together with decreased MuRF1 transcript levels. In addition, inulin specifically increased PGC1-α expression and key mitochondrial enzyme activities in the plantaris muscle of the old rats. These findings suggest that dietary supplementation with pea proteins in combination with inulin has the potential to attenuate age-related muscle loss. Further research is warranted to explore the underlying mechanisms and determine the optimal dosage and duration of intervention for potential translation to human studies.


Assuntos
Proteínas de Ervilha , Humanos , Masculino , Animais , Ratos , Lactente , Inulina/farmacologia , Músculo Esquelético , Suplementos Nutricionais , Envelhecimento
4.
Am J Physiol Endocrinol Metab ; 324(2): E176-E184, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629822

RESUMO

Sarcopenia, the age-related loss of skeletal muscle mass, is associated with lipid accumulation and anabolic resistance; phenomena also observed in obesity and worsen when obesity and aging are combined. The endocannabinoid system (ECS) is overactivated in obesity, but its role in aging obesity-related muscle dysfunction is unknown. The aims of this study were to evaluate the effect of inhibition of the ECS by rimonabant (RIM) on the metabolic alterations induced by a high-fat high-sucrose diet and on skeletal muscle mass/function in aged mice. Eighteen-month-old male mice were subjected to a control (CTL) or a high-fat high-sucrose (HFHS) diet for 24 weeks. Mice were administered with saline or RIM (10 mg/kg/day) for the last 4 weeks of the diet. Skeletal muscle function was evaluated by open-field, rotarod, and grip strength tests. Metabolic alterations in liver, adipose tissue, and skeletal muscle were investigated by quantitative RT-PCR. Body mass was higher in HFHS mice compared to CTL mice (48.0 ± 1.5 vs. 33.5 ± 0.7 g, P < 0.01), as a result of fat accumulation (34.8 ± 1.0 vs. 16.7 ± 0.8%, P < 0.01). RIM reduced body fat mass in both CTL (-16%, P < 0.05) and HFHS conditions (-40%, P < 0.01), without affecting hindlimb skeletal muscle mass. In HFHS mice, grip strength evolution was improved (-0.29 ± 0.06 vs. -0.49 ± 0.06 g/g lean mass, P < 0.05), and rotarod activity was increased by ≈60% in response to RIM (45.9 ± 6.3 vs. 28.5 ± 4.6 cm, P < 0.05). Lipolysis and ß-oxidation genes were upregulated in the liver as well as genes involved in adipose tissue browning. These results demonstrate that inhibition of the ECS induces metabolic changes in liver and adipose tissue associated with a reversion of the obese phenotype and that RIM is able to improve motor coordination and muscle strength in aged mice, without affecting skeletal muscle mass.NEW & NOTEWORTHY In 24-month-old mice submitted to high-fat high-sucrose-induced obesity, inhibition of the endocannabinoid system by rimonabant reversed the obese phenotype by promoting adipose tissue browning and ß-oxidation in the liver but not in skeletal muscle. These metabolism modifications are associated with improved skeletal muscle function.


Assuntos
Endocanabinoides , Obesidade , Masculino , Animais , Camundongos , Endocanabinoides/metabolismo , Rimonabanto/farmacologia , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Dieta Hiperlipídica , Fenótipo , Sacarose/farmacologia , Camundongos Endogâmicos C57BL
5.
Commun Biol ; 5(1): 1288, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434267

RESUMO

Skeletal muscle mitochondrial function is the biggest component of whole-body energy output. Mitochondrial energy production during exercise is impaired in vitamin D-deficient subjects. In cultured myotubes, loss of vitamin D receptor (VDR) function decreases mitochondrial respiration rate and ATP production from oxidative phosphorylation. We aimed to examine the effects of vitamin D deficiency and supplementation on whole-body energy expenditure and muscle mitochondrial function in old rats, old mice, and human subjects. To gain further insight into the mechanisms involved, we used C2C12 and human muscle cells and transgenic mice with muscle-specific VDR tamoxifen-inducible deficiency. We observed that in vivo and in vitro vitamin D fluctuations changed mitochondrial biogenesis and oxidative activity in skeletal muscle. Vitamin D supplementation initiated in older people improved muscle mass and strength. We hypothesize that vitamin D supplementation is likely to help prevent not only sarcopenia but also sarcopenic obesity in vitamin D-deficient subjects.


Assuntos
Sarcopenia , Deficiência de Vitamina D , Humanos , Camundongos , Ratos , Animais , Idoso , Vitamina D/farmacologia , Vitamina D/metabolismo , Sarcopenia/metabolismo , Deficiência de Vitamina D/metabolismo , Deficiência de Vitamina D/patologia , Músculo Esquelético/patologia , Mitocôndrias/metabolismo , Estresse Oxidativo
6.
J Appl Physiol (1985) ; 133(3): 611-621, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900326

RESUMO

Over the past decades, a growing interest in eccentric (ECC) exercise has emerged, but mitochondrial adaptations to ECC training remain poorly documented. Using an approach for manipulating mechanical and metabolic exercise power, we positioned that for the same metabolic power, training using concentric (CON) or ECC contractions would induce similar skeletal muscle mitochondrial adaptations. Sixty adult rats were randomly assigned to a control (CTRL) or three treadmill training groups running at 15 m·min-1 for 45 min, 5 days weekly for 8 wk at targeted upward or downward slopes. Animals from the CON (+15%) and ECC30 (-30%) groups were trained at iso-metabolic power, whereas CON and ECC15 (-15%) exercised at iso-mechanical power. Assessments were made of vastus intermedius mitochondrial respiration (oxygraphy), enzymatic activities (spectrophotometry), and real-time qPCR for mRNA transcripts. Maximal rates of mitochondrial respiration were 14%-15% higher in CON and ECC30 compared with CTRL and ECC15. Apparent Km for ADP for trained groups was 40%-66% higher than CTRL, with statistical significance reached for CON and ECC30. Complex I and citrate synthase activities were 1.6 (ECC15) to 1.8 (ECC30 and CON) times values of CTRL. Complex IV activity was higher than CTRL (P < 0.05) only for CON and ECC30. mRNA transcripts analyses showed higher TFAM, SLC25A4, CKMT2, and PPID in the ECC30 compared with CTRL. Findings confirm that training-induced skeletal muscle mitochondrial function adaptations are governed by the extent of metabolic overload irrespective of exercise modality. The distinctive ECC30 mRNA transcript pattern may reflect a cytoskeleton damage-repair or ECC adaptive cycle that differs from that of biogenesis.NEW & NOTEWORTHY Anticipating outcomes of eccentric versus concentric training is confounded by differences in mechanical efficiency. Our observations in groups of rats submitted to uphill and downhill running regimens inducing similar levels of metabolic demands or same external power outputs reaffirm that independent of modality, oxygen requirements and not external work governs skeletal muscle mitochondrial function adaptations.


Assuntos
Músculo Esquelético , Corrida , Animais , Masculino , Mitocôndrias , Músculo Esquelético/fisiologia , Músculo Quadríceps/metabolismo , RNA Mensageiro/metabolismo , Ratos , Corrida/fisiologia
7.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563153

RESUMO

Aging is associated with a progressive loss of skeletal muscle mass and function termed sarcopenia. Various metabolic alterations that occur with aging also increase the risk of undernutrition, which can worsen age-related sarcopenia. However, the impact of undernutrition on aged skeletal muscle remains largely under-researched. To build a deeper understanding of the cellular and molecular mechanisms underlying age-related sarcopenia, we characterized the undernutrition-induced changes in the skeletal muscle proteome in old rats. For this study, 20-month-old male rats were fed 50% or 100% of their spontaneous intake for 12 weeks, and proteomic analysis was performed on both slow- and fast-twitch muscles. Proteomic profiling of undernourished aged skeletal muscle revealed that undernutrition has profound effects on muscle proteome independently of its effect on muscle mass. Undernutrition-induced changes in muscle proteome appear to be muscle-type-specific: slow-twitch muscle showed a broad pattern of differential expression in proteins important for energy metabolism, whereas fast-twitch muscle mainly showed changes in protein turnover between undernourished and control rats. This first proteomic analysis of undernourished aged skeletal muscle provides new molecular-level insight to explain phenotypic changes in undernourished aged muscle. We anticipate this work as a starting point to define new biomarkers associated with undernutrition-induced muscle loss in the elderly.


Assuntos
Desnutrição , Sarcopenia , Envelhecimento/metabolismo , Animais , Masculino , Desnutrição/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteômica , Ratos , Sarcopenia/metabolismo
8.
J. physiol. biochem ; 78(2): 501-516, May. 2022.
Artigo em Inglês | IBECS | ID: ibc-215977

RESUMO

The purpose of this study was to determine whether magnesium L-lactate is responsible for having a beneficial effect on the myocardium and the skeletal muscles and how this substrate acts at the molecular level. Twenty seven young male Wistar rats were supplied with a magnesium L-lactate (L) solution, a magnesium chloride (M) solution and/or water (W) as a vehicle for 10 weeks. The treated animals absorbed the L and M solutions as they wished since they also had free access to water. After 9 weeks of treatment, in vivo cardiac function was determined ultrasonically. The animals were sacrificed at the end of the tenth week of treatment and the heart was perfused according to the Langendorff method by using a technique allowing the determination of cardiomyocyte activity (same coronary flow in the two groups). Blood was collected and skeletal muscles of the hind legs were weighed. The myocardial expressions of the sodium/proton exchange 1 (NHE1) and sodium/calcium exchange 1 (NCX1), intracellular calcium accumulation, myocardial magnesium content, as well as systemic and tissue oxidative stress, were determined. Animals of the L group absorbed systematically a low dose of L-lactate (31.5 ± 4.3 µg/100 g of body weight/day) which was approximately four times higher than that ingested in the W group through the diet supplied. Ex vivo cardiomyocyte contractility and the mass of some skeletal muscles (tibialis anterior) were increased by the L treatment. Myocardial calcium was decreased, as was evidenced by an increase in total CaMKII expression, without any change in the ratio between phosphorylated CaMKII and total CaMKII. Cardiac magnesium tended to be elevated. Our results suggest that the increased intracellular magnesium concentration was related to L-lactate-induced cytosolic acidosis and to the activation of the NHE1/NCX1 axis. Interestingly, systemic oxidative stress was reduced by the L treatment whereas the lipid profile of the animals was unaltered. (AU)


Assuntos
Animais , Ratos , Magnésio/metabolismo , Magnésio/farmacologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo
9.
J Physiol Biochem ; 78(2): 501-516, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34292519

RESUMO

The purpose of this study was to determine whether magnesium L-lactate is responsible for having a beneficial effect on the myocardium and the skeletal muscles and how this substrate acts at the molecular level. Twenty seven young male Wistar rats were supplied with a magnesium L-lactate (L) solution, a magnesium chloride (M) solution and/or water (W) as a vehicle for 10 weeks. The treated animals absorbed the L and M solutions as they wished since they also had free access to water. After 9 weeks of treatment, in vivo cardiac function was determined ultrasonically. The animals were sacrificed at the end of the tenth week of treatment and the heart was perfused according to the Langendorff method by using a technique allowing the determination of cardiomyocyte activity (same coronary flow in the two groups). Blood was collected and skeletal muscles of the hind legs were weighed. The myocardial expressions of the sodium/proton exchange 1 (NHE1) and sodium/calcium exchange 1 (NCX1), intracellular calcium accumulation, myocardial magnesium content, as well as systemic and tissue oxidative stress, were determined. Animals of the L group absorbed systematically a low dose of L-lactate (31.5 ± 4.3 µg/100 g of body weight/day) which was approximately four times higher than that ingested in the W group through the diet supplied. Ex vivo cardiomyocyte contractility and the mass of some skeletal muscles (tibialis anterior) were increased by the L treatment. Myocardial calcium was decreased, as was evidenced by an increase in total CaMKII expression, without any change in the ratio between phosphorylated CaMKII and total CaMKII. Cardiac magnesium tended to be elevated. Our results suggest that the increased intracellular magnesium concentration was related to L-lactate-induced cytosolic acidosis and to the activation of the NHE1/NCX1 axis. Interestingly, systemic oxidative stress was reduced by the L treatment whereas the lipid profile of the animals was unaltered. Taken together, these results suggest that a chronic low-dose L-lactate intake has a beneficial health effect on some skeletal muscles and the myocardium through the activation of the NHE1/NCX1 axis, a decrease in cellular calcium and an increase in cellular magnesium. The treatment can be beneficial for the health of young rodents in relation to chronic oxidative stress-related diseases.


Assuntos
Cálcio , Magnésio , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Lactatos/metabolismo , Magnésio/metabolismo , Magnésio/farmacologia , Masculino , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Wistar , Sódio/metabolismo , Água
10.
Nutrients ; 13(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34959786

RESUMO

Plant proteins are attracting rising interest due to their pro-health benefits and environmental sustainability. However, little is known about the nutritional value of pea proteins when consumed by older people. Herein, we evaluated the digestibility and nutritional efficiency of pea proteins compared to casein and whey proteins in old rats. Thirty 20-month-old male Wistar rats were assigned to an isoproteic and isocaloric diet containing either casein (CAS), soluble milk protein (WHEY) or Pisane™ pea protein isolate for 16 weeks. The three proteins had a similar effect on nitrogen balance, true digestibility and net protein utilization in old rats, which means that different protein sources did not alter body composition, tissue weight, skeletal muscle protein synthesis or degradation. Muscle mitochondrial activity, inflammation status and insulin resistance were similar between the three groups. In conclusion, old rats used pea protein with the same efficiency as casein or whey proteins, due to its high digestibility and amino acid composition. Using these plant-based proteins could help older people diversify their protein sources and more easily achieve nutritional intake recommendations.


Assuntos
Anabolizantes/farmacologia , Proteínas do Leite/farmacologia , Proteínas Musculares/metabolismo , Proteínas de Ervilha/farmacologia , Aminoácidos/metabolismo , Animais , Caseínas/farmacologia , Digestão/efeitos dos fármacos , Masculino , Músculo Esquelético/efeitos dos fármacos , Valor Nutritivo , Proteólise/efeitos dos fármacos , Ratos , Ratos Wistar , Proteínas do Soro do Leite/farmacologia
11.
Front Physiol ; 12: 749049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111075

RESUMO

The phenotype of sarcopenic obesity is frequently associated with impaired muscle strength and performance. Ectopic lipid deposition may interfere with muscle anabolic response especially during aging. Evidence is scarce concerning the potential interplay among aging and nutrient imbalance on skeletal muscle functionality. The objective of the present study was to investigate the impact of protein intake in the context of an obesogenic diet on skeletal muscle functional properties and intramuscular lipid infiltration. Two groups of forty-two adult and thirty-seven old male Wistar rats were randomly divided into four groups: isocaloric standard diet (12% protein, 14% lipid, as ST12); isocaloric standard (high-protein) diet (25% protein, 14% lipid, ST25); hypercaloric high-fat (normal-protein) diet (12% protein, 45% lipid, HF12); and hypercaloric high-fat (high-protein) diet (25% protein, 45% lipid, HF25). The nutritional intervention lasted 10 weeks. Total body composition was measured through Echo-MRI. Lipids were extracted from tibialis anterior muscle and analyzed by gas-liquid chromatography. The functional properties of the plantarflexor muscles were evaluated in vivo on an isokinetic dynamometer. Maximal torque was assessed from the torque-frequency relationship in isometric condition and maximal power was evaluated from the torque-velocity relationship in concentric condition. In adult rats high-protein intake combined with high-fat diet determined a lower decrease in relative isometric torque, normalized to either FFM or body weight, compared with adult rats fed a high-fat normal-protein diet. High-fat diet was also detrimental to relative muscle power, as normalized to body weight, that decreased to a larger extent in adult rats fed a high-fat normal-protein diet than their counterparts fed a normal-fat, high-protein diet. The effect of high-fat diet observed in adults, with the enhanced protein intake (25%) conferring some kind of protection against the negative effects of HFD, may be linked to the reduced intramuscular fat in this group, which may have contributed to preserve, at least partly, the contractile properties. A potential role for high-protein diet in preventing ectopic lipid deposition needs to be explored in future research. Detrimental effects of high- fat diet on skeletal muscle performance are mitigated by high- protein intake in adult rats but not in old rats.

12.
Nutrients ; 12(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485842

RESUMO

The mechanisms that are responsible for sarcopenia are numerous, but the altered muscle protein anabolic response to food intake that appears with advancing age plays an important role. Dietary protein quality needs to be optimized to counter this phenomenon. Blending different plant proteins is expected to compensate for the lower anabolic capacity of plant-based when compared to animal-based protein sources. The objective of this work was to evaluate the nutritional value of pasta products that were made from a mix of wheat semolina and faba bean, lentil, or split pea flour, and to assess their effect on protein metabolism as compared to dietary milk proteins in old rats. Forty-three old rats have consumed for six weeks isoproteic and isocaloric diets containing wheat pasta enriched with 62% to 79% legume protein (depending on the type) or milk proteins, i.e., casein or soluble milk proteins (SMP). The protein digestibility of casein and SMP was 5% to 14% higher than legume-enriched pasta. The net protein utilization and skeletal muscle protein synthesis rate were equivalent either in rats fed legume-enriched pasta diets or those fed casein diet, but lower than in rats fed SMP diet. After legume-enriched pasta intake, muscle mass, and protein accretion were in the same range as in the casein and SMP groups. Mixed wheat-legume pasta could be a nutritional strategy for enhancing the protein content and improving the protein quality, i.e., amino acid profile, of this staple food that is more adequate for maintaining muscle mass, especially for older individuals.


Assuntos
Ingestão de Alimentos/fisiologia , Fenômenos Fisiológicos da Nutrição do Idoso/fisiologia , Fabaceae , Proteínas do Leite/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Valor Nutritivo , Proteínas de Vegetais Comestíveis/administração & dosagem , Proteínas/metabolismo , Triticum , Fatores Etários , Proteínas Animais da Dieta/administração & dosagem , Proteínas Animais da Dieta/metabolismo , Animais , Caseínas/administração & dosagem , Caseínas/metabolismo , Masculino , Proteínas do Leite/metabolismo , Proteínas de Vegetais Comestíveis/metabolismo , Proteólise , Ratos Wistar
13.
Free Radic Biol Med ; 153: 71-79, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32330586

RESUMO

Evaluating the activity of cardiac mitochondria is probably the best way to estimate early cellular damage in chronic pathology. Early diagnosis allows rapid therapeutic intervention thus increasing patient survival rate in a number of diseases. However, data on human cardiac mitochondria are scarce in the international literature. Here, we describe a method to extract and study functional mitochondria from the small-sized right atrial aliquots (minimum of 400 mg) obtained during extracorporeal circulation and usually considered as surgical waste products. The mitochondria were purified through several mechanical processes (fine myocardial cutting, tissue grinding and potter Elvehjem homogenising), an enzymatic proteolytic action (subtilisin) and differential centrifugations. In chronic pathologies, including obesity, early disturbances of mitochondrial function can occur. The effects of obesity on the rate of mitochondrial oxygen consumption and H2O2 release were thus determined with three different substrates (glutamate/malate, succinate/rotenone and palmitoylcarnitine/malate). The human atrial mitochondria were of high quality from a functional viewpoint, compared to rat ventricle organelles, but the extraction yield of the human mitochondria was twice lower than that of rat mitochondria. Tests showed that glutamate/malate-related ADP-stimulated respiration was strongly increased in obese subjects, although the oxidation of the other two substrates was unaffected. Reactive oxygen species (ROS) production by the isolated mitochondria was low in comparison with that of the lean subjects. These results confirm those found in one of our previous studies in the ventricles of rats fed a high-fat diet. In conclusion, the described method is simple, reliable and sensitive. It allows for the description of the impact of obesity on the function of atrial mitochondria while using only a small patient sampling (n = 5 in both the lean and the obese groups).


Assuntos
Peróxido de Hidrogênio , Consumo de Oxigênio , Animais , Humanos , Obesidade , Ratos , Espécies Reativas de Oxigênio , Rotenona
14.
J Cachexia Sarcopenia Muscle ; 10(3): 696-709, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30927336

RESUMO

BACKGROUND: Sarcopenia is the loss of muscle mass/function that occurs during the aging process. The links between mechanistic target of rapamycin (mTOR) activity and muscle development are largely documented, but the role of its downstream targets in the development of sarcopenia is poorly understood. Eukaryotic initiation factor 4E-binding proteins (4E-BPs) are targets of mTOR that repress mRNA translation initiation and are involved in the control of several physiological processes. However, their role in skeletal muscle is still poorly understood. The goal of this study was to assess how loss of 4E-BP1 and 4E-BP2 expression impacts skeletal muscle function and homeostasis in aged mice and to characterize the associated metabolic changes by metabolomic and lipidomic profiling. METHODS: Twenty-four-month-old wild-type and whole body 4E-BP1/4E-BP2 double knockout (DKO) mice were used to measure muscle mass and function. Protein homeostasis was measured ex vivo in extensor digitorum longus by incorporation of l-[U-14 C]phenylalanine, and metabolomic and lipidomic profiling of skeletal muscle was performed by Metabolon, Inc. RESULTS: The 4E-BP1/2 DKO mice exhibited an increase in muscle mass that was associated with increased grip strength (P < 0.05). Protein synthesis was higher under both basal (+102%, P < 0.05) and stimulated conditions (+65%, P < 0.05) in DKO skeletal muscle. Metabolomic and complex lipid analysis of skeletal muscle revealed robust differences pertaining to amino acid homeostasis, carbohydrate abundance, and certain aspects of lipid metabolism. In particular, levels of most free amino acids were lower within the 4E-BP1/2 DKO muscle. Interestingly, although glucose levels were unchanged, differences were observed in the isobaric compound maltitol/lactitol (33-fold increase, P < 0.01) and in several additional carbohydrate compounds. 4E-BP1/2 depletion also resulted in accumulation of medium-chain acylcarnitines and a 20% lower C2/C0 acylcarnitine ratio (P < 0.01) indicative of reduced ß-oxidation. CONCLUSIONS: Taken together, these findings demonstrate that deletion of 4E-BPs is associated with perturbed energy metabolism in skeletal muscle and could have beneficial effects on skeletal muscle mass and function in aging mice. They also identify 4E-BPs as potential targets for the treatment of sarcopenia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Envelhecimento/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Biossíntese de Proteínas/genética , Sarcopenia/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Aminoácidos/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Modelos Animais de Doenças , Metabolismo Energético/genética , Fatores de Iniciação em Eucariotos/genética , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Metabolômica , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Proteostase/genética , Sarcopenia/genética , Sarcopenia/terapia , Transdução de Sinais/genética
15.
Br J Nutr ; 121(5): 496-507, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30526703

RESUMO

This study aimed to evaluate the nutritional value of pasta enriched with legume or wheat gluten proteins and dried at varying temperature. A total of four isonitrogenous experimental diets were produced using gluten powder/wheat semolina (6/94, g/g) pasta and faba bean flour/wheat semolina (35/65, g/g) pasta dried at either 55°C (GLT and FLT, respectively) or 90°C (FVHT and GVHT, respectively). Experimental diets were fed to ten 1-month-old Wistar rats (body weight=176 (sem 15) g) for 21 d. Growth and nutritional, metabolic and inflammatory markers were measured and compared with an isonitrogenous casein diet (CD). The enrichment with faba bean increased the lysine, threonine and branched amino acids by 97, 23 and 10 %, respectively. Protein utilisation also increased by 75 % (P<0·01) in FLT in comparison to GLT diet, without any effect on the corrected faecal digestibility (P>0·05). Faba bean pasta diets' corrected protein digestibility and utilisation was only 3·5 and 9 %, respectively, lower than the CD. Growth rate, blood composition and muscle weights were not generally different with faba bean pasta diets compared with CD. Corrected protein digestibility was 3 % lower in GVHT than GLT, which may be associated with greater carboxymethyllysine. This study in growing rats clearly indicates improvement in growth performance of rats fed legume-enriched pasta diet compared with rats fed gluten-wheat pasta diet, regardless of pasta drying temperature. This means faba bean flour can be used to improve the protein quality and quantity of pasta.

16.
J Nutr ; 147(12): 2262-2271, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28835387

RESUMO

Background: A promising strategy to help older adults preserve or build muscle mass is to optimize muscle anabolism through providing an adequate amount of high-quality protein at each meal.Objective: This "proof of principle" study investigated the acute effect of supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink on postprandial muscle protein synthesis and longer-term effect on muscle mass in healthy older adults.Methods: A randomized, placebo-controlled, double-blind study was conducted in 24 healthy older men [mean ± SD: age 71 ± 4 y; body mass index (in kg/m2) 24.7 ± 2.8] between September 2012 and October 2013 at the Unit of Human Nutrition, University of Auvergne, Clermont-Ferrand, France. Participants received a medical nutrition drink [test group; 21 g leucine-enriched whey protein, 9 g carbohydrates, 3 g fat, 800 IU cholecalciferol (vitamin D3), and 628 kJ] or a noncaloric placebo (control group) before breakfast for 6 wk. Mixed muscle protein fractional synthesis rate (FSR) was measured at week 0 in the basal and postprandial state, after study product intake with a standardized breakfast with the use of l-[2H5]-phenylalanine tracer methodology. The longer-term effect of the medical nutrition drink was evaluated by measurement of appendicular lean mass, representing skeletal muscle mass at weeks 0 and 6, by dual-energy X-ray absorptiometry.Results: Postprandial FSR (0-240 min) was higher in the test group than in the control group [estimate of difference (ED): 0.022%/h; 95% CI: 0.010%/h, 0.035%/h; ANCOVA, P = 0.001]. The test group gained more appendicular lean mass than the control group after 6 wk (ED: 0.37 kg; 95% CI: 0.03, 0.72 kg; ANCOVA, P = 0.035), predominantly as leg lean mass (ED: 0.30 kg; 95% CI: 0.03, 0.57 kg; ANCOVA, P = 0.034).Conclusions: Supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink stimulated postprandial muscle protein synthesis and increased muscle mass after 6 wk of intervention in healthy older adults and may therefore be a way to support muscle preservation in older people. This trial was registered at www.trialregister.nl as NTR3471.


Assuntos
Bebidas/análise , Leucina/administração & dosagem , Proteínas Musculares/biossíntese , Vitamina D/administração & dosagem , Proteínas do Soro do Leite/administração & dosagem , Proteínas do Soro do Leite/química , Idoso , Desjejum , Dieta , Método Duplo-Cego , Ingestão de Energia , Análise de Alimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Músculo Esquelético , Período Pós-Prandial
17.
Mol Nutr Food Res ; 61(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28758352

RESUMO

SCOPE: One strategy to manage malnutrition in older patients is to increase protein and energy intake. Here, we evaluate the influence of protein quality during refeeding on improvement in muscle protein and energy metabolism. METHODS AND RESULTS: Twenty-month-old male rats (n = 40) were fed 50% of their spontaneous intake for 12 weeks to induce malnutrition, then refed ad libitum with a standard diet enriched with casein or soluble milk proteins (22%) for 4 weeks. A 13C-valine was infused to measure muscle protein synthesis and expression of MuRF1, and MAFbx was measured to evaluate muscle proteolysis. mTOR pathway activation and mitochondrial function were assessed in muscle. Malnutrition was associated with a decrease in body weight, fat mass, and lean mass, particularly muscle mass. Malnutrition decreased muscle mTOR pathway activation and protein FSR associated with increased MuRF1 mRNA levels, and decreased mitochondrial function. The refeeding period partially restored fat mass and lean mass. Unlike the casein diet, the soluble milk protein diet improved muscle protein metabolism and mitochondrial function in old malnourished rats. CONCLUSIONS: These results suggest that providing better-quality proteins during refeeding may improve efficacy of renutrition in malnourished older patients.


Assuntos
Suplementos Nutricionais , Digestão , Fenômenos Fisiológicos da Nutrição do Idoso , Desnutrição/dietoterapia , Proteínas do Leite/uso terapêutico , Proteínas Musculares/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Metabolismo Energético , Imageamento por Ressonância Magnética , Masculino , Desnutrição/diagnóstico por imagem , Desnutrição/metabolismo , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/metabolismo , Desenvolvimento Muscular , Proteínas Musculares/genética , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Proteólise , Distribuição Aleatória , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/genética , Solubilidade , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Imagem Corporal Total
18.
Mol Nutr Food Res ; 61(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28544394

RESUMO

SCOPE: In recent years, several studies reported the role of eIF4E-binding proteins (4E-BPs) on the development of diet-induced obesity and insulin resistance. Our aim was to investigate the effect of 4E-BP protein deletion on lipid accumulation and metabolism in skeletal muscle in response to a high-fat diet induced obesity in 4E-BP1/2 DKO mice. METHODS AND RESULTS: Diet-induced obesity engendered increased ectopic accumulation of lipotoxic species in skeletal muscle of 4E-BP1 and 4E-BP2 double knockout mice (4E-BP1/2 DKO), namely diacylglycerols and ceramides. Increased lipid accumulation was associated with alterations in the expression of genes involved in fatty acid transport (FATP, CD36), diacylglycerol/triacylglycerol biosynthesis (GPAT1, AGPAT1, DGAT1), and ß-oxidation (CPT1b, MCAD). Diet-induced obesity resulted in increased lean mass and muscle in 4E-BP1/2 DKO mice despite the development of a more severe systemic insulin resistance. Since increased expression of genes of several proteolytic systems (MuRF1, atrogin/MAFbx, and cathepsin-l) in 4EBP1/2 DKO skeletal muscle was reported, the increase of skeletal muscle mass in 4E-BP1/2 DKO mice suggests that ablation of 4E-BPs compensate with activation of muscle anabolism. CONCLUSIONS: These findings indicate that 4E-BP proteins may prevent excess lipid accumulation in skeletal muscle and suggest that 4E-BPs are key regulators of muscle homeostasis regardless of insulin sensitivity.


Assuntos
Proteínas de Transporte/fisiologia , Fatores de Iniciação em Eucariotos/fisiologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Fosfoproteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Dieta Hiperlipídica , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteostase
19.
J Nutr Biochem ; 46: 30-38, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28445792

RESUMO

We investigated the impact of vitamin D deficiency and repletion on muscle anabolism in old rats. Animals were fed a control (1 IU vitamin D3/g, ctrl, n=20) or a vitamin D-depleted diet (VDD; 0 IU, n=30) for 6 months. A subset was thereafter sacrificed in the control (ctrl6) and depleted groups (VDD6). Remaining control animals were kept for 3 additional months on the same diet (ctrl9), while a part of VDD rats continued on a depleted diet (VDD9) and another part was supplemented with vitamin D (5 IU, VDS9). The ctr16 and VDD6 rats and the ctr19, VDD9 and VDS9 rats were 21 and 24 months old, respectively. Vitamin D status, body weight and composition, muscle strength, weight and lipid content were evaluated. Muscle protein synthesis rate (fractional synthesis rate; FSR) and the activation of controlling pathways were measured. VDD reduced plasma 25(OH)-vitamin D, reaching deficiency (<25 nM), while 25(OH)-vitamin D increased to 118 nM in the VDS group (P<.0001). VDD animals gained weight (P<.05) with no corresponding changes in lean mass or muscle strength. Weight gain was associated with an increase in fat mass (+63%, P<.05), intramyocellular lipids (+75%, P<.05) and a trend toward a decreased plantaris weight (-19%, P=.12). Muscle FSR decreased by 40% in the VDD group (P<.001), but was restored by vitamin D supplementation (+70%, P<.0001). Such changes were linked to an over-phosphorylation of eIF2α. In conclusion, vitamin D deficiency in old rats increases adiposity and leads to reduced muscle protein synthesis through activation of eIF2α. These disorders are restored by vitamin D supplementation.


Assuntos
Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Deficiência de Vitamina D/metabolismo , Vitamina D/farmacologia , Envelhecimento/fisiologia , Animais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Suplementos Nutricionais , Ingestão de Alimentos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais , Vitamina D/sangue , Deficiência de Vitamina D/dietoterapia , Deficiência de Vitamina D/fisiopatologia
20.
Eur J Nutr ; 54(7): 1139-49, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25370302

RESUMO

PURPOSE: The aim of this study was to evaluate and compare the musculoskeletal effects induced by ovariectomy-related fat mass deposition against the musculoskeletal effects caused by a high-fat diet. METHODS: A group of adult female rats was ovariectomized and fed a control diet. Two additional groups were sham-operated and fed a control or a high-fat diet for 19 weeks. Distal femur and serum bone parameters were measured to assess bone metabolism. Muscle protein metabolism, mitochondrial markers and triglyceride content were evaluated in tibialis anterior. Triglyceride content was evaluated in liver. Circulating inflammatory and metabolic markers were determined. RESULTS: The high-fat diet and ovariectomy led to similar increases in fat mass (+36.6-56.7%; p < 0.05) but had different impacts on bone and muscle tissues and inflammatory markers. Consumption of the high-fat diet led to decreased bone formation (-38.4%; p < 0.05), impaired muscle mitochondrial metabolism, muscle lipotoxicity and a 20.9% increase in tibialis anterior protein synthesis rate (p < 0.05). Ovariectomy was associated with higher bone turnover as bone formation increased +72.7% (p < 0.05) and bone resorption increased +76.4% (p < 0.05), leading to bone loss, a 17.9% decrease in muscle protein synthesis rate (p < 0.05) and liver lipotoxicity. CONCLUSIONS: In female rats, high-fat diet and ovariectomy triggered similar gains in fat mass but had different impacts on bone and muscle metabolism. The ovariectomy-induced mechanisms affecting the musculoskeletal system are mainly caused by estrogen depletion, which surpasses the potential-independent effect of adiposity.


Assuntos
Adiposidade , Remodelação Óssea , Dieta Hiperlipídica/efeitos adversos , Fêmur/metabolismo , Músculo Esquelético/metabolismo , Ovariectomia/efeitos adversos , Animais , Glicemia/metabolismo , Colesterol/sangue , Feminino , Insulina/sangue , Metabolismo dos Lipídeos , Fígado/metabolismo , Tamanho do Órgão , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...