Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38676495

RESUMO

INTRODUCTION: Human Immunodeficiency Virus (HIV) is a retrovirus with single-stranded RNA that leads to the challenging disease of acquired immunodeficiency syndrome (AIDS). Combination antiretroviral therapy (cART) can prevent the progression of the disease, but it is not capable of long-term HIV elimination. One of the significant obstacles to treating HIV-1-infected individuals is the creation of latent cell reservoirs early in the infection. Gene-based therapies that utilize RNA interference (RNAi) to silence host or viral gene expression are considered promising therapeutic approaches. It has been demonstrated that RUNX1, a T-cell-specific transcription factor, may significantly affect HIV replication and infection. According to accumulating evidence on the role of interfering RNA techniques in inhibiting gene expression and considering the role of RUNX1 in the replication of HIV-1. In this study, we aim to design shRNAs against RUNX1 that can target the replication of HIV-1.

Methods: Several computational methods, including target alignment, similarity search, and secondary structure prediction, have been employed in the design of shRNA against RUNX1.

Results: Seven shRNA molecules with the highest efficiency were designed and validated using computational methods to silence the RUNX1 gene.

Conclusions: In the present study, we designed shRNA against RUNX1, which can target latent cells infected with HIV. Suppression of RUNX1 by shRNA reactivates HIV in the latent cells and subsequently potentiates the immune response toward identifying accurate virus-infected cells. This process may lead to an effective and efficient reduction of the volume of cell reservoirs infected with HIV.

2.
Cell Oncol (Dordr) ; 45(6): 1073-1117, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149600

RESUMO

BACKGROUND: Gastric cancer imposes a substantial global health burden despite its overall incidence decrease. A broad spectrum of inherited, environmental and infectious factors contributes to the development of gastric cancer. A profound understanding of the molecular underpinnings of gastric cancer has lagged compared to several other tumors with similar incidence and morbidity rates, owing to our limited knowledge of the role of carcinogens in this malignancy. The International Agency for Research on Cancer (IARC) has classified gastric carcinogenic agents into four groups based on scientific evidence from human and experimental animal studies. This review aims to explore the potential comprehensive molecular and biological impacts of carcinogens on gastric cancer development and their interactions and interferences with various cellular signaling pathways. CONCLUSIONS: In this review, we highlight recent clinical trial data reported in the literature dealing with different ways to target various carcinogens in gastric cancer. Moreover, we touch upon other multidisciplinary therapeutic approaches such as surgery, adjuvant and neoadjuvant chemotherapy. Rational clinical trials focusing on identifying suitable patient populations are imperative to the success of single-agent therapeutics. Novel insights regarding signaling pathways that regulate gastric cancer can potentially improve treatment responses to targeted therapy alone or in combination with other/conventional treatments. Preventive strategies such as control of H. pylori infection through eradication or immunization as well as dietary habit and lifestyle changes may reduce the incidence of this multifactorial disease, especially in high prevalence areas. Further in-depth understanding of the molecular mechanisms involved in the role of carcinogenic agents in gastric cancer development may offer valuable information and update state-of-the-art resources for physicians and researchers to explore novel ways to combat this disease, from bench to bedside. A schematic outlining of the interaction between gastric carcinogenic agents and intracellular pathways in gastric cancer H. pylori stimulates multiple intracellular pathways, including PI3K/AKT, NF-κB, Wnt, Shh, Ras/Raf, c-MET, and JAK/STAT, leading to epithelial cell proliferation and differentiation, apoptosis, survival, motility, and inflammatory cytokine release. EBV can stimulate intracellular pathways such as the PI3K/Akt, RAS/RAF, JAK/STAT, Notch, TGF-ß, and NF-κB, leading to cell survival and motility, proliferation, invasion, metastasis, and the transcription of anti-apoptotic genes and pro-inflammatory cytokines. Nicotine and alcohol can lead to angiogenesis, metastasis, survival, proliferation, pro-inflammatory, migration, and chemotactic by stimulating various intracellular signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, ROS, and JAK/STAT. Processed meat contains numerous carcinogenic compounds that affect multiple intracellular pathways such as sGC/cGMP, p38 MAPK, ERK, and PI3K/AKT, leading to anti-apoptosis, angiogenesis, metastasis, inflammatory responses, proliferation, and invasion. Lead compounds may interact with multiple signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, DNA methylation-dependent, and epigenetic-dependent, leading to tumorigenesis, carcinogenesis, malignancy, angiogenesis, DNA hypermethylation, cell survival, and cell proliferation. Stimulating signaling pathways such as PI3K/Akt, RAS/RAF, JAK/STAT, WNT, TGF-ß, EGF, FGFR2, and E-cadherin through UV ionizing radiation leads to cell survival, proliferation, and immortalization in gastric cancer. The consequence of PI3K/AKT, NF-κB, Ras/Raf, ROS, JAK/STAT, and WNT signaling stimulation by the carcinogenic component of Pickled vegetables and salted fish is the Warburg effect, tumorigenesis, angiogenesis, proliferation, inflammatory response, and migration.


Assuntos
Neoplasias Gástricas , Animais , Humanos , Neoplasias Gástricas/genética , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carcinógenos , Transformação Celular Neoplásica/patologia , Fator de Crescimento Transformador beta
3.
Cell Cycle ; 21(16): 1753-1774, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470783

RESUMO

The present study aimed to explore the involved lncRNA-miRNA-mRNA network in the cell cycle and proliferation after conventional treatments in Luminal A breast cancer patients.The candidate miRNAs (miRs), lncRNAs, and mRNAs were first taken from the Gene Expression Omnibus and TCGA databases. The lncRNA-miR-mRNA network was then constructed using the high-throughput sequencing data. The expression levels of selected targets were measured in the breast cancer and healthy samples by the Real-Time PCR technique and compared with the clinical outcomes by the Kaplan-Meier method.Our analysis revealed a group of differentially expressed 3 lncRNAs, 9 miRs, and 14 mRNAs in breast cancer patients. A significant expression decrease of the selected tumor suppressor lncRNAs, miRs, and genes and a substantial expression increase of the selected onco-lncRNAs, oncomiRs, and oncogenes were obtained in the patients compared to the healthy group. The plasma levels of the lncRNAs, miRs, and mRNAs were more significant after the operation, chemotherapy, and radiotherapy than the pre-treatment. The Kaplan-Meier analysis indicated that the patients with a high expression of miR-21, miR-20b, IGF1R, and E2F2 and a low expression of miR-125a, PDCD4, and PTEN had exhibited a shorter overall survival rate.Our results suggested that the underlying mechanisms of the lncRNA, miRs, and mRNAs and relevant signaling pathways may be considered predictive and therapeutic targets for breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/genética , Ciclo Celular/genética , Proliferação de Células/genética , Feminino , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
4.
Eur J Pharmacol ; 923: 174888, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35367422

RESUMO

Opioids have been used for medicinal purposes as an analgesic and recreational purposes as a euphorigenic throughout human history. Cancer patients are often treated with different doses of opioids concurrently with anti-cancer drugs for pain relief without exhibiting excessive adverse effects. The intersection of the biology of pain, opioid therapy, and disease progression represents the crux of the matters and is of potentially great importance in cancer care. For more than 20 years, multiple investigations have focused on the stimulatory effects of opioids on cancer cell growth, while in-depth studies on the inhibitory effects on cancer cell growth development have usually been neglected. This paper reviews the evidence regarding opioid therapies and their anti-cancer effects on various malignancies. Likewise, we have a glimpse into the molecular mechanisms necessary for pinpointing their positive or negative impacts on malignancies to raise awareness and stimulate more excellent dialogue regarding their carcinogenic/anticarcinogenic roles.


Assuntos
Analgésicos Opioides , Neoplasias , Analgésicos/uso terapêutico , Analgésicos Opioides/efeitos adversos , Humanos , Neoplasias/induzido quimicamente , Neoplasias/tratamento farmacológico , Dor/tratamento farmacológico
5.
Cytotechnology ; 70(2): 865-877, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29417442

RESUMO

Current medication for gastric cancer patients has a low success rate with resistance and side effects. According to recent studies, γ-secretase inhibitors is used as therapeutic drugs in cancer. Moreover, all-trans retinoic acid (ATRA) is a natural compound proposed for the treatment/chemo-prevention of cancers. The aim of this study was to explore the effects of ATRA in combination with N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT) as γ-secretase inhibitor on viability and apoptosis of the AGS and MKN-45 derived from human gastric cancer. AGS and MKN-45 gastric cancer cell lines were treated with different concentrations of ATRA or DAPT alone or ATRA plus DAPT. The viability, death detection and apoptosis of cells was examined by MTT assay and Ethidium bromide/acridine orange staining. The distribution of cells in different phases of cell cycle was also evaluated through flow cytometry analyses. In addition, caspase 3/7 activity and the expression of caspase-3 and bcl-2 were examined. DAPT and ATRA alone decreased gastric cancer cells viability in a concentration dependent manner. The combination of DAPT and ATRA exhibited significant synergistic inhibitory effects. The greater percentage of cells were accumulated in G0/G1 phase of cell cycle in combination treatment. The combination of DAPT and ATRA effectively increased the proportion of apoptotic cells and the level of caspase 3/7 activities compared to single treatment. Moreover, augmented caspase-3 up-regulation and bcl-2 down-regulation were found following combined application of DAPT and ATRA. The combination of DAPT and ATRA led to more reduction in viability and apoptosis in respect to DAPT or ATRA alone in the investigated cell lines.

6.
Cancer Med ; 6(12): 2998-3013, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29047224

RESUMO

The Ral (Ras-Like) signaling pathway plays an important role in the biology of cells. A plethora of effects is regulated by this signaling pathway and its prooncogenic effectors. Our team has demonstrated the overactivation of the RalA signaling pathway in a number of human malignancies including cancers of the liver, ovary, lung, brain, and malignant peripheral nerve sheath tumors. Additionally, we have shown that the activation of RalA in cancer stem cells is higher in comparison with differentiated cancer cells. In this article, we review the role of Ral signaling in health and disease with a focus on the role of this multifunctional protein in the generation of therapies for cancer. An improved understanding of this pathway can lead to development of a novel class of anticancer therapies that functions on the basis of intervention with RalA or its downstream effectors.


Assuntos
Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Células-Tronco Neoplásicas/patologia , Terapia Viral Oncolítica , Vírus Oncolíticos/metabolismo , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Proteínas ral de Ligação ao GTP/química , Proteínas ral de Ligação ao GTP/genética
8.
Arch Virol ; 162(4): 1009-1015, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28110427

RESUMO

The main aim of this study was to evaluate the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and inducible nitric oxide synthase (iNOS) as host factors, and proviral load as the viral parameter, in adult T-cell leukemia/lymphoma (ATLL) individuals and healthy carrier (HC(s)) groups. Peripheral blood mononuclear cells (PBMC) from ATLL patients (n = 17) and HC subjects (as the control group, n = 17) were evaluated using real-time PCR to determine the levels of HTLV-1 proviral load and mRNA expression of ICAM, VCAM-1, and iNOS. ICAM-1 was significantly lower in ATLL patients than in control subjects. Although the expression of VCAM-1 was higher in ATLL individuals, there was no significant difference between the studied groups. In addition, no iNOS expression was found in ATLL patients, when compared to the HCs subjects, while ATLL patients demonstrated a higher level of proviral load when compared to the control group. Considering the importance of ICAM-1 in facilitating immune recognition of infected cells, it is posited that reduction of ICAM-1 expression is a unique strategy for circumventing appropriate immune responses that are mediated by different accessory proteins. Additionally, as the viral regulatory protein Tax and the NF-κB pathway play pivotal roles in expression of iNOS, lack of the latter in ATLL patients may be related to the level of Tax expression, disruption of the NF-κB pathway, or the occurrence of epigenetical mechanisms in the human iNOS promoter. Further studies are recommended to gain a better understanding of the interaction between host and viral factors in HTLV-1 pathogenesis and to identify a possible therapeutic target for ATLL.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Molécula 1 de Adesão Intercelular/genética , Leucemia-Linfoma de Células T do Adulto/genética , Óxido Nítrico Sintase Tipo II/genética , Molécula 1 de Adesão de Célula Vascular/genética , Adulto , Feminino , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Leucemia-Linfoma de Células T do Adulto/metabolismo , Leucemia-Linfoma de Células T do Adulto/virologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/metabolismo , Regiões Promotoras Genéticas , Molécula 1 de Adesão de Célula Vascular/metabolismo
9.
Mol Oncol ; 8(5): 1043-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24785097

RESUMO

Ral (Ras like) leads an important proto-oncogenic signaling pathway down-stream of Ras. In this work, RalA was found to be significantly overactivated in hepatocellular carcinoma (HCC) cells and tissues as compared to non-malignant samples. Other elements of RalA pathway such as RalBP1 and RalGDS were also expressed at higher levels in malignant samples. Inhibition of RalA by gene-specific silencing caused a robust decrease in the viability and invasiveness of HCC cells. Additionally, the use of geranyl-geranyl transferase inhibitor (GGTI, an inhibitor of Ral activation) and Aurora kinase inhibitor II resulted in a significant decrease in the proliferation of HCC cells. Furthermore, RalA activation was found to be at a higher level of activation in HCC stem cells that express CD133. Transgenic mouse model for HCC (FXR-Knockout) also revealed an elevated level of RalA-GTP in the liver tumors as compared to background animals. Finally, subcutaneous mouse model for HCC confirmed effectiveness of inhibition of aurora kinase/RalA pathway in reducing the tumorigenesis of HCC cells in vivo. In conclusion, RalA overactivation is an important determinant of malignant phenotype in differentiated and stem cells of HCC and can be considered as a target for therapeutic intervention.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas ral de Ligação ao GTP/antagonistas & inibidores , Proteínas ral de Ligação ao GTP/genética , Animais , Aurora Quinases/antagonistas & inibidores , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inativação Gênica , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...