Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(3): 519-535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216617

RESUMO

Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.


Assuntos
Feiticeiras (Peixe) , Animais , Filogenia , Feiticeiras (Peixe)/genética , Duplicação Gênica , Vertebrados/genética , Genoma , Lampreias/genética
2.
Mol Biol Evol ; 38(8): 3033-3045, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33822172

RESUMO

Accurate determination of the evolutionary relationships between genes is a foundational challenge in biology. Homology-evolutionary relatedness-is in many cases readily determined based on sequence similarity analysis. By contrast, whether or not two genes directly descended from a common ancestor by a speciation event (orthologs) or duplication event (paralogs) is more challenging, yet provides critical information on the history of a gene. Since 2009, this task has been the focus of the Quest for Orthologs (QFO) Consortium. The sixth QFO meeting took place in Okazaki, Japan in conjunction with the 67th National Institute for Basic Biology conference. Here, we report recent advances, applications, and oncoming challenges that were discussed during the conference. Steady progress has been made toward standardization and scalability of new and existing tools. A feature of the conference was the presentation of a panel of accessible tools for phylogenetic profiling and several developments to bring orthology beyond the gene unit-from domains to networks. This meeting brought into light several challenges to come: leveraging orthology computations to get the most of the incoming avalanche of genomic data, integrating orthology from domain to biological network levels, building better gene models, and adapting orthology approaches to the broad evolutionary and genomic diversity recognized in different forms of life and viruses.


Assuntos
Especiação Genética , Genômica/tendências , Filogenia , Genoma Viral , Genômica/métodos
3.
Nature ; 584(7821): 403-409, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760000

RESUMO

The tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana1,2-is an iconic species that is endemic to New Zealand2,3. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes2,4. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing.


Assuntos
Evolução Molecular , Genoma/genética , Filogenia , Répteis/genética , Animais , Conservação dos Recursos Naturais/tendências , Feminino , Genética Populacional , Lagartos/genética , Masculino , Anotação de Sequência Molecular , Nova Zelândia , Caracteres Sexuais , Serpentes/genética , Sintenia
5.
Gigascience ; 9(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942620

RESUMO

BACKGROUND: The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea-dwelling species will allow several pending evolutionary questions to be unlocked. FINDINGS: We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome. CONCLUSIONS: This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.


Assuntos
Decapodiformes/genética , Genoma , Genômica , Animais , Evolução Biológica , Cromatografia Líquida , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Perfilação da Expressão Gênica , Genômica/métodos , Anotação de Sequência Molecular , Família Multigênica , RNA não Traduzido , Espectrometria de Massas em Tandem , Transcriptoma , Sequenciamento Completo do Genoma
6.
Nucleic Acids Res ; 48(D1): D689-D695, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31598706

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of interfaces to genomic data across the tree of life, including reference genome sequence, gene models, transcriptional data, genetic variation and comparative analysis. Data may be accessed via our website, online tools platform and programmatic interfaces, with updates made four times per year (in synchrony with Ensembl). Here, we provide an overview of Ensembl Genomes, with a focus on recent developments. These include the continued growth, more robust and reproducible sets of orthologues and paralogues, and enriched views of gene expression and gene function in plants. Finally, we report on our continued deeper integration with the Ensembl project, which forms a key part of our future strategy for dealing with the increasing quantity of available genome-scale data across the tree of life.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Variação Genética , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Algoritmos , Animais , Caenorhabditis elegans/genética , Genômica , Internet , Anotação de Sequência Molecular , Fenótipo , Plantas/genética , Valores de Referência , Software , Interface Usuário-Computador
7.
Nucleic Acids Res ; 48(D1): D682-D688, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31691826

RESUMO

The Ensembl (https://www.ensembl.org) is a system for generating and distributing genome annotation such as genes, variation, regulation and comparative genomics across the vertebrate subphylum and key model organisms. The Ensembl annotation pipeline is capable of integrating experimental and reference data from multiple providers into a single integrated resource. Here, we present 94 newly annotated and re-annotated genomes, bringing the total number of genomes offered by Ensembl to 227. This represents the single largest expansion of the resource since its inception. We also detail our continued efforts to improve human annotation, developments in our epigenome analysis and display, a new tool for imputing causal genes from genome-wide association studies and visualisation of variation within a 3D protein model. Finally, we present information on our new website. Both software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license) and data updates made available four times a year.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Epigenoma , Anotação de Sequência Molecular , Algoritmos , Animais , Gráficos por Computador , Bases de Dados de Proteínas , Variação Genética , Estudo de Associação Genômica Ampla , Genômica , Histonas/metabolismo , Humanos , Imageamento Tridimensional , Internet , Ligantes , Ferramenta de Busca , Software , Especificidade da Espécie , Transcriptoma , Interface Usuário-Computador , Navegador
8.
Mol Biol Evol ; 36(10): 2157-2164, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31241141

RESUMO

Gene families evolve by the processes of speciation (creating orthologs), gene duplication (paralogs), and horizontal gene transfer (xenologs), in addition to sequence divergence and gene loss. Orthologs in particular play an essential role in comparative genomics and phylogenomic analyses. With the continued sequencing of organisms across the tree of life, the data are available to reconstruct the unique evolutionary histories of tens of thousands of gene families. Accurate reconstruction of these histories, however, is a challenging computational problem, and the focus of the Quest for Orthologs Consortium. We review the recent advances and outstanding challenges in this field, as revealed at a symposium and meeting held at the University of Southern California in 2017. Key advances have been made both at the level of orthology algorithm development and with respect to coordination across the community of algorithm developers and orthology end-users. Applications spanned a broad range, including gene function prediction, phylostratigraphy, genome evolution, and phylogenomics. The meetings highlighted the increasing use of meta-analyses integrating results from multiple different algorithms, and discussed ongoing challenges in orthology inference as well as the next steps toward improvement and integration of orthology resources.


Assuntos
Evolução Molecular , Genômica/tendências , Família Multigênica , Algoritmos , Animais , Genômica/métodos , Humanos
9.
Nucleic Acids Res ; 47(D1): D745-D751, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30407521

RESUMO

The Ensembl project (https://www.ensembl.org) makes key genomic data sets available to the entire scientific community without restrictions. Ensembl seeks to be a fundamental resource driving scientific progress by creating, maintaining and updating reference genome annotation and comparative genomics resources. This year we describe our new and expanded gene, variant and comparative annotation capabilities, which led to a 50% increase in the number of vertebrate genomes we support. We have also doubled the number of available human variants and added regulatory regions for many mouse cell types and developmental stages. Our data sets and tools are available via the Ensembl website as well as a through a RESTful webservice, Perl application programming interface and as data files for download.


Assuntos
Bases de Dados Genéticas , Genoma/genética , Genômica , Vertebrados/genética , Animais , Biologia Computacional/tendências , Humanos , Camundongos , Anotação de Sequência Molecular , Software
10.
Bioinformatics ; 34(2): 323-329, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28968857

RESUMO

The Quest for Orthologs (QfO) is an open collaboration framework for experts in comparative phylogenomics and related research areas who have an interest in highly accurate orthology predictions and their applications. We here report highlights and discussion points from the QfO meeting 2015 held in Barcelona. Achievements in recent years have established a basis to support developments for improved orthology prediction and to explore new approaches. Central to the QfO effort is proper benchmarking of methods and services, as well as design of standardized datasets and standardized formats to allow sharing and comparison of results. Simultaneously, analysis pipelines have been improved, evaluated and adapted to handle large datasets. All this would not have occurred without the long-term collaboration of Consortium members. Meeting regularly to review and coordinate complementary activities from a broad spectrum of innovative researchers clearly benefits the community. Highlights of the meeting include addressing sources of and legitimacy of disagreements between orthology calls, the context dependency of orthology definitions, special challenges encountered when analyzing very anciently rooted orthologies, orthology in the light of whole-genome duplications, and the concept of orthologous versus paralogous relationships at different levels, including domain-level orthology. Furthermore, particular needs for different applications (e.g. plant genomics, ancient gene families and others) and the infrastructure for making orthology inferences available (e.g. interfaces with model organism databases) were discussed, with several ongoing efforts that are expected to be reported on during the upcoming 2017 QfO meeting.

11.
Nucleic Acids Res ; 46(D1): D754-D761, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29155950

RESUMO

The Ensembl project has been aggregating, processing, integrating and redistributing genomic datasets since the initial releases of the draft human genome, with the aim of accelerating genomics research through rapid open distribution of public data. Large amounts of raw data are thus transformed into knowledge, which is made available via a multitude of channels, in particular our browser (http://www.ensembl.org). Over time, we have expanded in multiple directions. First, our resources describe multiple fields of genomics, in particular gene annotation, comparative genomics, genetics and epigenomics. Second, we cover a growing number of genome assemblies; Ensembl Release 90 contains exactly 100. Third, our databases feed simultaneously into an array of services designed around different use cases, ranging from quick browsing to genome-wide bioinformatic analysis. We present here the latest developments of the Ensembl project, with a focus on managing an increasing number of assemblies, supporting efforts in genome interpretation and improving our browser.


Assuntos
Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Genoma , Disseminação de Informação , Animais , Epigenômica , Genoma Humano , Estudo de Associação Genômica Ampla , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Vertebrados/genética , Navegador
12.
Nucleic Acids Res ; 45(D1): D635-D642, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899575

RESUMO

Ensembl (www.ensembl.org) is a database and genome browser for enabling research on vertebrate genomes. We import, analyse, curate and integrate a diverse collection of large-scale reference data to create a more comprehensive view of genome biology than would be possible from any individual dataset. Our extensive data resources include evidence-based gene and regulatory region annotation, genome variation and gene trees. An accompanying suite of tools, infrastructure and programmatic access methods ensure uniform data analysis and distribution for all supported species. Together, these provide a comprehensive solution for large-scale and targeted genomics applications alike. Among many other developments over the past year, we have improved our resources for gene regulation and comparative genomics, and added CRISPR/Cas9 target sites. We released new browser functionality and tools, including improved filtering and prioritization of genome variation, Manhattan plot visualization for linkage disequilibrium and eQTL data, and an ontology search for phenotypes, traits and disease. We have also enhanced data discovery and access with a track hub registry and a selection of new REST end points. All Ensembl data are freely released to the scientific community and our source code is available via the open source Apache 2.0 license.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica/métodos , Ferramenta de Busca , Software , Navegador , Animais , Mineração de Dados , Evolução Molecular , Regulação da Expressão Gênica , Variação Genética , Genoma Humano , Humanos , Anotação de Sequência Molecular , Especificidade da Espécie , Vertebrados
13.
Nucleic Acids Res ; 44(D1): D710-6, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26687719

RESUMO

The Ensembl project (http://www.ensembl.org) is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species and released numerous updates across our supported species with a concentration on data for the latest genome assemblies of human, mouse, zebrafish and rat. We also provided two data updates for the previous human assembly, GRCh37, through a dedicated website (http://grch37.ensembl.org). Our tools, in particular the VEP, have been improved significantly through integration of additional third party data. REST is now capable of larger-scale analysis and our regulatory data BioMart can deliver faster results. The website is now capable of displaying long-range interactions such as those found in cis-regulated datasets. Finally we have launched a website optimized for mobile devices providing views of genes, variants and phenotypes. Our data is made available without restriction and all code is available from our GitHub organization site (http://github.com/Ensembl) under an Apache 2.0 license.


Assuntos
Bases de Dados Genéticas , Genômica , Anotação de Sequência Molecular , Animais , Genes , Variação Genética , Humanos , Internet , Camundongos , Proteínas/genética , Ratos , Sequências Reguladoras de Ácido Nucleico , Software
14.
Nucleic Acids Res ; 43(Database issue): D662-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25352552

RESUMO

Ensembl (http://www.ensembl.org) is a genomic interpretation system providing the most up-to-date annotations, querying tools and access methods for chordates and key model organisms. This year we released updated annotation (gene models, comparative genomics, regulatory regions and variation) on the new human assembly, GRCh38, although we continue to support researchers using the GRCh37.p13 assembly through a dedicated site (http://grch37.ensembl.org). Our Regulatory Build has been revamped to identify regulatory regions of interest and to efficiently highlight their activity across disparate epigenetic data sets. A number of new interfaces allow users to perform large-scale comparisons of their data against our annotations. The REST server (http://rest.ensembl.org), which allows programs written in any language to query our databases, has moved to a full service alongside our upgraded website tools. Our online Variant Effect Predictor tool has been updated to process more variants and calculate summary statistics. Lastly, the WiggleTools package enables users to summarize large collections of data sets and view them as single tracks in Ensembl. The Ensembl code base itself is more accessible: it is now hosted on our GitHub organization page (https://github.com/Ensembl) under an Apache 2.0 open source license.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genômica , Animais , Epigênese Genética , Variação Genética , Genoma Humano , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico , Software
15.
Nucleic Acids Res ; 42(Database issue): D922-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24194607

RESUMO

TreeFam (http://www.treefam.org) is a database of phylogenetic trees inferred from animal genomes. For every TreeFam family we provide homology predictions together with the evolutionary history of the genes. Here we describe an update of the TreeFam database. The TreeFam project was resurrected in 2012 and has seen two releases since. The latest release (TreeFam 9) was made available in March 2013. It has orthology predictions and gene trees for 109 species in 15,736 families covering ∼2.2 million sequences. With release 9 we made modifications to our production pipeline and redesigned our website with improved gene tree visualizations and Wikipedia integration. Furthermore, we now provide an HMM-based sequence search that places a user-provided protein sequence into a TreeFam gene tree and provides quick orthology prediction. The tool uses Mafft and RAxML for the fast insertion into a reference alignment and tree, respectively. Besides the aforementioned technical improvements, we present a new approach to visualize gene trees and alternative displays that focuses on showing homology information from a species tree point of view. From release 9 onwards, TreeFam is now hosted at the EBI.


Assuntos
Bases de Dados Genéticas , Família Multigênica , Filogenia , Animais , Genoma , Internet
16.
Genome Biol Evol ; 3: 896-908, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21824869

RESUMO

At a genomic scale, the patterns that have shaped molecular evolution are believed to be largely heterogeneous. Consequently, comparative analyses should use appropriate probabilistic substitution models that capture the main features under which different genomic regions have evolved. While efforts have concentrated in the development and understanding of model selection techniques, no descriptions of overall relative substitution model fit at the genome level have been reported. Here, we provide a characterization of best-fit substitution models across three genomic data sets including coding regions from mammals, vertebrates, and Drosophila (24,000 alignments). According to the Akaike Information Criterion (AIC), 82 of 88 models considered were selected as best-fit models at least in one occasion, although with very different frequencies. Most parameter estimates also varied broadly among genes. Patterns found for vertebrates and Drosophila were quite similar and often more complex than those found in mammals. Phylogenetic trees derived from models in the 95% confidence interval set showed much less variance and were significantly closer to the tree estimated under the best-fit model than trees derived from models outside this interval. Although alternative criteria selected simpler models than the AIC, they suggested similar patterns. All together our results show that at a genomic scale, different gene alignments for the same set of taxa are best explained by a large variety of different substitution models and that model choice has implications on different parameter estimates including the inferred phylogenetic trees. After taking into account the differences related to sample size, our results suggest a noticeable diversity in the underlying evolutionary process. All together, we conclude that the use of model selection techniques is important to obtain consistent phylogenetic estimates from real data at a genomic scale.


Assuntos
Genoma , Modelos Genéticos , Nucleotídeos/genética , Filogenia , Animais , Drosophila/genética , Evolução Molecular , Mamíferos/genética , Mutação , Fases de Leitura Aberta/genética , Alinhamento de Sequência , Vertebrados/genética
17.
BMC Bioinformatics ; 11: 268, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20487540

RESUMO

BACKGROUND: Typical evolutionary events like recombination, hybridization or gene transfer make necessary the use of phylogenetic networks to properly depict the evolution of DNA and protein sequences. Although several theoretical classes have been proposed to characterize these networks, they make stringent assumptions that will likely not be met by the evolutionary process. We have recently shown that the complexity of simulated networks is a function of the population recombination rate, and that at moderate and large recombination rates the resulting networks cannot be categorized. However, we do not know whether these results extend to networks estimated from real data. RESULTS: We introduce a web server for the categorization of explicit phylogenetic networks, including the most relevant theoretical classes developed so far. Using this tool, we analyzed statistical parsimony phylogenetic networks estimated from approximately 5,000 DNA alignments, obtained from the NCBI PopSet and Polymorphix databases. The level of characterization was correlated to nucleotide diversity, and a high proportion of the networks derived from these data sets could be formally characterized. CONCLUSIONS: We have developed a public web server, NetTest (freely available from the software section at http://darwin.uvigo.es), to formally characterize the complexity of phylogenetic networks. Using NetTest we found that most statistical parsimony networks estimated with the program TCS could be assigned to a known network class. The level of network characterization was correlated to nucleotide diversity and dependent upon the intra/interspecific levels, although no significant differences were detected among genes. More research on the properties of phylogenetic networks is clearly needed.


Assuntos
Filogenia , Software , Bases de Dados Genéticas , Evolução Molecular , Hibridização Genética
18.
Genet. mol. biol ; 30(4): 1077-1081, 2007. tab
Artigo em Inglês | LILACS | ID: lil-471031

RESUMO

Brazilian poultry industry has reached a high level of development in both meat and egg production as a result of constant technological modernization. Further improvements can be achieved through genomics, but before this can be accomplished, a better understanding of gene expression profiles and nucleotide polymorphisms is necessary. Since animal physiology is directly or indirectly controlled by the pituitary and hypothalamus, the aim of the present work was to identify and analyze genes expressed in these tissues in chicken lines with different growth potential. Two pituitary and hypothalamus cDNA libraries from 21 day broiler (TT) and layer (CC) chickens lines were constructed and allowed identification of 3,074 unique sequences and 77 single nucleotide polymorphisms (SNPs). The collection of expressed sequence tags (ESTs) and SNPs identified in this study represents an important resource for future studies aimed at identifying genes responsible for growth in chicken.

19.
Int J Dev Biol ; 48(4): 333-7, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15300514

RESUMO

Chicken Expressed Sequence Tags (ESTs) were analyzed to identify genes associated with myogenesis during embryonic development. A total of 6,184 ESTs were generated from three cDNA libraries constructed from whole embryos (Stage 26), somites associated with neural tube (Stage 15), and limb buds (Stages 21, 24 and 26). Clustering and assembly of 4,998 valid ESTs resulted in 2,329 unique sequences with 902 clusters (38.7%) and 1,427 singletons (61.3%). There are more than 400,000 chicken ESTs available at GenBank and we were able to identify 143 novel sequences. From these, 45 sequences found either a human EST homolog or a match with conserved regions among proteins. Most of these sequences were found to be expressed in somites, an important tissue for muscle development and not characterized before. This study revealed the value of micro dissected embryonic libraries for describing gene expression profiles associated with myogenesis and gene discovery.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Embrião de Galinha , DNA Complementar/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Humanos , Dados de Sequência Molecular , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...