Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 22(11): 3475-3488, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37847596

RESUMO

Numerous Aß proteoforms, identified in the human brain, possess differential neurotoxic and aggregation propensities. These proteoforms contribute in unknown ways to the conformations and resultant pathogenicity of oligomers, protofibrils, and fibrils in Alzheimer's disease (AD) manifestation owing to the lack of molecular-level specificity to the exact chemical composition of underlying protein products with widespread interrogating techniques, like immunoassays. We evaluated Aß proteoform flux using quantitative top-down mass spectrometry (TDMS) in a well-studied 5xFAD mouse model of age-dependent Aß-amyloidosis. Though the brain-derived Aß proteoform landscape is largely occupied by Aß1-42, 25 different forms of Aß with differential solubility were identified. These proteoforms fall into three natural groups defined by hierarchical clustering of expression levels in the context of mouse age and proteoform solubility, with each group sharing physiochemical properties associated with either N/C-terminal truncations or both. Overall, the TDMS workflow outlined may hold tremendous potential for investigating proteoform-level relationships between insoluble fibrils and soluble Aß, including low-molecular-weight oligomers hypothesized to serve as the key drivers of neurotoxicity. Similarly, the workflow may also help to validate the utility of AD-relevant animal models to recapitulate amyloidosis mechanisms or possibly explain disconnects observed in therapeutic efficacy in animal models vs humans.


Assuntos
Doença de Alzheimer , Amiloidose , Camundongos , Humanos , Animais , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Espectrometria de Massas
2.
Proteomics ; 22(11-12): e2100209, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35286768

RESUMO

The effectiveness of any proteomics database search depends on the theoretical candidate information contained in the protein database. Unfortunately, candidate entries from protein databases such as UniProt rarely contain all the post-translational modifications (PTMs), disulfide bonds, or endogenous cleavages of interest to researchers. These omissions can limit discovery of novel and biologically important proteoforms. Conversely, searching for a specific proteoform becomes a computationally difficult task for heavily modified proteins. Both situations require updates to the database through user-annotated entries. Unfortunately, manually creating properly formatted UniProt Extensible Markup Language (XML) files is tedious and prone to errors. ProSight Annotator solves these issues by providing a graphical interface for adding user-defined features to UniProt-formatted XML files for better informed proteoform searches. It can be downloaded from http://prosightannotator.northwestern.edu.


Assuntos
Idioma , Proteínas , Bases de Dados de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteômica , Software
3.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216328

RESUMO

Human amyloid beta peptide (Aß) is a brain catabolite that at nanomolar concentrations can form neurotoxic oligomers (AßOs), which are known to accumulate in Alzheimer's disease. Because a predisposition to form neurotoxins seems surprising, we have investigated whether circumstances might exist where AßO accumulation may in fact be beneficial. Our investigation focused on the embryonic chick retina, which expresses the same Aß as humans. Using conformation-selective antibodies, immunoblots, mass spectrometry, and fluorescence microscopy, we discovered that AßOs are indeed present in the developing retina, where multiple proteoforms are expressed in a highly regulated cell-specific manner. The expression of the AßO proteoforms was selectively associated with transiently expressed phosphorylated Tau (pTau) proteoforms that, like AßOs, are linked to Alzheimer's disease (AD). To test whether the AßOs were functional in development, embryos were cultured ex ovo and then injected intravitreally with either a beta-site APP-cleaving enzyme 1 (BACE-1) inhibitor or an AßO-selective antibody to prematurely lower the levels of AßOs. The consequence was disrupted histogenesis resulting in dysplasia resembling that seen in various retina pathologies. We suggest the hypothesis that embryonic AßOs are a new type of short-lived peptidergic hormone with a role in neural development. Such a role could help explain why a peptide that manifests deleterious gain-of-function activity when it oligomerizes in the aging brain has been evolutionarily conserved.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Retina/metabolismo , Animais , Encéfalo/metabolismo , Galinhas/metabolismo , Espaço Extracelular/metabolismo , Sinapses/metabolismo
4.
Anal Chem ; 93(50): 16741-16750, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34881887

RESUMO

Proteoform-resolved information, obtained by top-down (TD) "intact protein" proteomics, is expected to contribute substantially to the understanding of molecular pathogenic mechanisms and, in turn, identify novel therapeutic and diagnostic targets. However, the robustness of mass spectrometry (MS) analysis of intact proteins in complex biological samples is hindered by the high dynamic range in protein concentration and mass, protein instability, and buffer complexity. Here, we describe an evolutionary step for intact protein investigations through the online implementation of tandem microflow size-exclusion chromatography with nanoflow reversed-phase liquid chromatography and MS (µSEC2-nRPLC-MS). Online serial high-/low-pass SEC filtration overcomes the aforementioned hurdles to intact proteomic analysis through automated sample desalting/cleanup and enrichment of target mass ranges (5-155 kDa) prior to nRPLC-MS. The coupling of µSEC to nRPLC is achieved through a novel injection volume control (IVC) strategy of inserting protein trap columns, pre- and post-µSEC columns, to enable injection of dilute samples in high volumes without loss of sensitivity or resolution. Critical characteristics of the approach are tested via rigorous investigations on samples of varied complexity and chemical background. Application of the platform to cerebrospinal fluid (CSF) prefractionated by OFFGEL isoelectric focusing drastically increases the number of intact mass tags (IMTs) detected within the target mass range (5-30 kDa) in comparison to one-dimensional nRPLC-MS with approximately 100× less CSF than previous OFFGEL studies. Furthermore, the modular design of the µSEC2-nRPLC-MS platform is robust and promises significant flexibility for large-scale TDMS analysis of diverse samples either directly or in concert with other multidimensional fractionation steps.


Assuntos
Proteínas do Líquido Cefalorraquidiano , Proteômica , Animais , Focalização Isoelétrica , Espectrometria de Massas , Primatas
5.
Int J Mass Spectrom ; 4652021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34539228

RESUMO

The combined use of electrospray ionization run in so-called "native mode" with top-down mass spectrometry (nTDMS) is enhancing both structural biology and discovery proteomics by providing three levels of information in a single experiment: the intact mass of a protein or complex, the masses of its subunits and non-covalent cofactors, and fragment ion masses from direct dissociation of subunits that capture the primary sequence and combinations of diverse post-translational modifications (PTMs). While intact mass data are readily deconvoluted using well-known software options, the analysis of fragmentation data that result from a tandem MS experiment - essential for proteoform characterization - is not yet standardized. In this tutorial, we offer a decision-tree for the analysis of nTDMS experiments on protein complexes and diverse bioassemblies. We include an overview of strategies to navigate this type of analysis, provide example data sets, and highlight software for the hypothesis-driven interrogation of fragment ions for localization of PTMs, metals, and cofactors on native proteoforms. Throughout we have emphasized the key features (deconvolution, search mode, validation, other) that the reader can consider when deciding upon their specific experimental and data processing design using both open-access and commercial software.

6.
J Am Soc Mass Spectrom ; 32(1): 346-354, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33274937

RESUMO

An investigation of a multidimensional proteomics workflow composed of off-gel isoelectric focusing (IEF) and superficially porous liquid chromatography (SPLC) with Fourier transform mass spectrometry (FTMS) was completed in order to assess various figures of merit associated with intact protein measurements. Triplicate analysis performed at both high and low FTMS resolutions on the E. coli proteome resulted in ∼900 redundant proteoforms from 3 to 95 kDa. Normalization of the chromatographic axis to identified proteoforms enabled reproducible physicochemical property measurements between proteome replicates with inter-replicate variances of ±3 ppm mass error for proteoforms <30 kDa, ±1.1 Da for proteins >30 kDa, ±12 s retention time error, and ±0.21 pI units. The results for E. coli and standard proteins revealed a correlation between pI precision and proteoform abundance with species detected in multiple IEF fractions exhibiting pI precisions less than the theoretical resolution of the off-gel system (±0.05 vs ±0.17, respectively). Evaluation of differentially modified proteoforms of standard proteins revealed that high sample loads (100s µgrams) change the IEF pH gradient profile, leading to sample broadening that facilitates resolution of charged post-translational modifications (e.g., phosphorylation, sialylation). Despite the impact of sample load on IEF resolution, results on standard proteins measured directly or after being spiked into E. coli demonstrated that the reproducibility of the workflow permitted recombination of the MS signal across IEF fractions in a manner supporting the evaluation of three label-free quantitation metrics for intact protein studies (proteoforms, proteoform ratios, and protein) over 102-103 sample amount with low femtomole detection limits.

7.
J Am Soc Mass Spectrom ; 31(7): 1398-1409, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32436704

RESUMO

Protein fragmentation is a critical component of top-down proteomics, enabling gene-specific protein identification and full proteoform characterization. The factors that influence protein fragmentation include precursor charge, structure, and primary sequence, which have been explored extensively for collision-induced dissociation (CID). Recently, noticeable differences in CID-based fragmentation were reported for native versus denatured proteins, motivating the need for scoring metrics that are tailored specifically to native top-down mass spectrometry (nTDMS). To this end, position and intensity were tracked for 10,252 fragment ions produced by higher-energy collisional dissociation (HCD) of 159 native monomers and 70 complexes. We used published structural data to explore the relationship between fragmentation and protein topology and revealed that fragmentation events occur at a large range of relative residue solvent accessibility. Additionally, our analysis found that fragment ions at sites with an N-terminal aspartic acid or a C-terminal proline make up on average 40 and 27%, respectively, of the total matched fragment ion intensity in nTDMS. Percent intensity contributed by each amino acid was determined and converted into weights to (1) update the previously published C-score and (2) construct a native Fragmentation Propensity Score. Both scoring systems showed an improvement in protein identification or characterization in comparison to traditional methods and overall increased confidence in results with fewer matched fragment ions but with high probability nTDMS fragmentation patterns. Given the rise of nTDMS as a tool for structural mass spectrometry, we forward these scoring metrics as new methods to enhance analysis of nTDMS data.


Assuntos
Íons , Proteoma , Proteômica/métodos , Animais , Linhagem Celular , Bases de Dados de Proteínas , Humanos , Íons/análise , Íons/química , Espectrometria de Massas , Camundongos , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Proteoma/análise , Proteoma/química
8.
J Am Soc Mass Spectrom ; 31(3): 574-581, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-31971796

RESUMO

New tools and techniques have dramatically accelerated the field of structural biology over the past several decades. One potent and relatively new technique that is now being utilized by an increasing number of laboratories is the combination of so-called "native" electrospray ionization (ESI) with mass spectrometry (MS) for the characterization of proteins and their noncovalent complexes. However, native ESI-MS produces species at increasingly higher m/z with increasing molecular weight, leading to substantial differences when compared to traditional mass spectrometric approaches using denaturing ESI solutions. Herein, these differences are explored both theoretically and experimentally to understand the role that charge state and isotopic distributions have on signal-to-noise (S/N) as a function of complex molecular weight and how the reduced collisional cross sections of proteins electrosprayed under native solution conditions can lead to improved data quality in image current mass analyzers, such as Orbitrap and FT-ICR. Quantifying ion signal differences under native and denatured conditions revealed enhanced S/N and a more gradual decay in S/N with increasing mass under native conditions. Charge state and isotopic S/N models, supported by experimental results, indicate that analysis of proteins under native conditions at 100 kDa will be 17 times more sensitive than analysis under denatured conditions at the same mass. Higher masses produce even larger sensitivity gains. Furthermore, reduced cross sections under native conditions lead to lower levels of ion decay within an Orbitrap scan event over long transient acquisition times, enabling isotopic resolution of species with molecular weights well in excess of those typically resolved under denatured conditions.


Assuntos
Proteínas/química , Animais , Humanos , Íons/química , Desnaturação Proteica , Espectrometria de Massas por Ionização por Electrospray , Eletricidade Estática
9.
J Proteome Res ; 18(11): 3999-4012, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550894

RESUMO

Cocaine addiction afflicts nearly 1 million adults in the United States, and to date, there are no known treatments approved for this psychiatric condition. Women are particularly vulnerable to developing a cocaine use disorder and suffer from more serious cardiac consequences than men when using cocaine. Estrogen is one biological factor contributing to the increased risk for females to develop problematic cocaine use. Animal studies have demonstrated that estrogen (17ß-estradiol or E2) enhances the rewarding properties of cocaine. Although E2 affects the dopamine system, the molecular and cellular mechanisms of E2-enhanced cocaine reward have not been characterized. In this study, quantitative top-down proteomics was used to measure intact proteins in specific regions of the female mouse brain after mice were trained for cocaine-conditioned place preference, a behavioral test of cocaine reward. Several proteoform changes occurred in the ventral tegmental area after combined cocaine and E2 treatments, with the most numerous proteoform alterations on myelin basic protein, indicating possible changes in white matter structure. There were also changes in histone H4, protein phosphatase inhibitors, cholecystokinin, and calmodulin proteoforms. These observations provide insight into estrogen signaling in the brain and may guide new approaches to treating women with cocaine use disorder.


Assuntos
Encéfalo/efeitos dos fármacos , Cocaína/farmacologia , Estradiol/farmacologia , Proteoma/metabolismo , Proteômica/métodos , Animais , Encéfalo/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Estrogênios/farmacologia , Feminino , Camundongos Endogâmicos C57BL , Ovariectomia , Recompensa , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
10.
Nat Commun ; 10(1): 2675, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209220

RESUMO

Aerobic methane oxidation is catalyzed by particulate methane monooxygenase (pMMO), a copper-dependent, membrane metalloenzyme composed of subunits PmoA, PmoB, and PmoC. Characterization of the copper active site has been limited by challenges in spectroscopic analysis stemming from the presence of multiple copper binding sites, effects of detergent solubilization on activity and crystal structures, and the lack of a heterologous expression system. Here we utilize nanodiscs coupled with native top-down mass spectrometry (nTDMS) to determine the copper stoichiometry in each pMMO subunit and to detect post-translational modifications (PTMs). These results indicate the presence of a mononuclear copper center in both PmoB and PmoC. pMMO-nanodisc complexes with a higher stoichiometry of copper-bound PmoC exhibit increased activity, suggesting that the PmoC copper site plays a role in methane oxidation activity. These results provide key insights into the pMMO copper centers and demonstrate the ability of nTDMS to characterize complex membrane-bound metalloenzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Espectrometria de Massas/métodos , Methylococcaceae/metabolismo , Modelos Moleculares , Oxigenases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cobre/química , Cobre/metabolismo , Microscopia Crioeletrônica , Metano/metabolismo , Metanol/metabolismo , Methylococcaceae/química , Methylococcaceae/ultraestrutura , Oxirredução , Oxigenases/química , Oxigenases/ultraestrutura , Processamento de Proteína Pós-Traducional
11.
J Am Soc Mass Spectrom ; 30(7): 1190-1198, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30963455

RESUMO

Native mass spectrometry (nMS) is a technique growing at the interface of analytical chemistry, structural biology, and proteomics that enables the detection and partial characterization of non-covalent protein assemblies. Currently, the standardization and dissemination of nMS is hampered by technical challenges associated with instrument operation, benchmarking, and optimization over time. Here, we provide a standard operating procedure for acquiring high-quality native mass spectra of 30-300 kDa proteins using an Orbitrap mass spectrometer. By describing reproducible sample preparation, loading, ionization, and nMS analysis, we forward two proteoforms and three complexes as possible standards to advance training and longitudinal assessment of instrument performance. Spectral data for five standards can guide assessment of instrument parameters, data production, and data analysis. By introducing this set of standards and protocols, we aim to help normalize native mass spectrometry practices across labs and provide benchmarks for reproducibility and high-quality data production in the years ahead. Graphical abstract.


Assuntos
Espectrometria de Massas/métodos , Multimerização Proteica , Proteínas/química , Álcool Desidrogenase/química , Animais , Anidrases Carbônicas/química , Bovinos , Modelos Moleculares , Piruvato Quinase/química , Coelhos , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
12.
Microb Biotechnol ; 11(5): 943-951, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30014612

RESUMO

As current methods for antibiotic drug discovery are being outpaced by the rise of antimicrobial resistance, new methods and innovative technologies are necessary to replenish our dwindling arsenal of antimicrobial agents. To this end, we developed the PepSAVI-MS pipeline to expedite the search for natural product bioactive peptides. Herein we demonstrate expansion of PepSAVI-MS for the discovery of bacterial-sourced bioactive peptides through identification of the bacteriocin Bac-21 from Enterococcus faecalis pPD1. Minor pipeline modifications including implementation of bacteria-infused agar diffusion assays and optional digestion of peptide libraries highlight the versatility and wide adaptability of the PepSAVI-MS pipeline. Additionally, we have experimentally validated the primary protein sequence of the active, mature Bac-21 peptide for the first time and have confirmed its identity with respect to primary sequence and post-translational processing. Successful application of PepSAVI-MS to bacterial secretomes as demonstrated herein establishes proof-of-principle for use in novel microbial bioactive peptide discovery.


Assuntos
Proteínas de Bactérias/análise , Proteínas de Bactérias/farmacologia , Bacteriocinas/análise , Bacteriocinas/farmacologia , Produtos Biológicos/análise , Produtos Biológicos/farmacologia , Enterococcus faecalis/química , Espectrometria de Massas , Proteoma/análise
13.
Anal Chem ; 90(6): 3802-3810, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29481055

RESUMO

Over the past decade, advances in mass spectrometry-based proteomics have accelerated brain proteome research aimed at studying the expression, dynamic modification, interaction and function of proteins in the nervous system that are associated with physiological and behavioral processes. With the latest hardware and software improvements in top-down mass spectrometry, the technology has expanded from mere protein profiling to high-throughput identification and quantification of intact proteoforms. Murine systems are broadly used as models to study human diseases. Neuroscientists specifically study the mouse brain from inbred strains to help understand how strain-specific genotype and phenotype affect development, functioning, and disease progression. This work describes the first application of label-free quantitative top-down proteomics to the analysis of the mouse brain proteome. Operating in discovery mode, we determined physiochemical differences in brain tissue from four healthy inbred strains, C57BL/6J, DBA/2J, FVB/NJ, and BALB/cByJ, after probing their intact proteome in the 3.5-30 kDa mass range. We also disseminate these findings using a new tool for top-down proteomics, TDViewer and cataloged them in a newly established Mouse Brain Proteoform Atlas. The analysis of brain tissues from the four strains identified 131 gene products leading to the full characterization of 343 of the 593 proteoforms identified. Within the results, singly and doubly phosphorylated ARPP-21 proteoforms, known to inhibit calmodulin, were differentially expressed across the four strains. Gene ontology (GO) analysis for detected differentially expressed proteoforms also helps to illuminate the similarities and dissimilarities in phenotypes among these inbred strains.


Assuntos
Química Encefálica , Espectrometria de Massas/métodos , Camundongos Endogâmicos , Proteoma/análise , Proteômica/métodos , Animais , Encéfalo/metabolismo , Cromatografia Líquida/métodos , Feminino , Camundongos Endogâmicos BALB C/metabolismo , Camundongos Endogâmicos C57BL/metabolismo , Camundongos Endogâmicos DBA/metabolismo , Camundongos Endogâmicos/metabolismo , Proteoma/metabolismo , Software
14.
Nat Chem Biol ; 14(3): 206-214, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29443976

RESUMO

Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.


Assuntos
Genoma Humano , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteoma/química , Proteômica/métodos , Bases de Dados de Proteínas , Humanos , Espectrometria de Massas , Fenótipo , Biossíntese de Proteínas , Isoformas de Proteínas/química , Ubiquitina/química
15.
Anal Chem ; 89(22): 12030-12038, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29016107

RESUMO

Myelin basic protein (MBP) plays an important structural and functional role in the neuronal myelin sheath. Translated MBP exhibits extreme microheterogeneity with numerous alternative splice variants (ASVs) and post-translational modifications (PTMs) reportedly tied to central nervous system maturation, myelin stability, and the pathobiology of various de- and dys-myelinating disorders. Conventional bioanalytical tools cannot efficiently examine ASV and PTM events simultaneously, which limits understanding of the role of MBP microheterogeneity in human physiology and disease. To address this need, we report on a top-down proteomics pipeline that combines superficially porous reversed-phase liquid chromatography (SPLC), Fourier transform mass spectrometry (FTMS), data-independent acquisition (DIA) with nozzle-skimmer dissociation (NSD), and aligned data processing resources to rapidly characterize abundant MBP proteoforms within murine tissue. The three-tier proteoform identification and characterization workflow resolved four known MBP ASVs and hundreds of differentially modified states from a single 90 min SPLC-FTMS run on ∼0.5 µg of material. This included 323 proteoforms for the 14.1 kDa ASV alone. We also identified two novel ASVs from an alternative transcriptional start site (ATSS) of the MBP gene as well as a never before characterized S-acylation event linking palmitic acid, oleic acid, and stearic acid at C78 of the 17.125 kDa ASV.


Assuntos
Cromatografia de Fase Reversa/métodos , Proteína Básica da Mielina/análise , Animais , Análise de Fourier , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Porosidade , Propriedades de Superfície
16.
Adv Exp Med Biol ; 919: 171-200, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27975217

RESUMO

This chapter highlights many of the fundamental concepts and technologies in the field of top-down mass spectrometry (TDMS), and provides numerous examples of contributions that TD is making in biology, biophysics, and clinical investigations. TD workflows include variegated steps that may include non-specific or targeted preparative strategies, orthogonal liquid chromatography techniques, analyte ionization, mass analysis, tandem mass spectrometry (MS/MS) and informatics procedures. This diversity of experimental designs has evolved to manage the large dynamic range of protein expression and diverse physiochemical properties of proteins in proteome investigations, tackle proteoform microheterogeneity, as well as determine structure and composition of gas-phase proteins and protein assemblies.


Assuntos
Cromatografia/métodos , Espectrometria de Massas/métodos , Proteínas/análise , Proteoma , Proteômica/métodos , Animais , Biologia Computacional , Bases de Dados de Proteínas , Ensaios de Triagem em Larga Escala , Humanos , Fluxo de Trabalho
18.
J Biomol NMR ; 62(3): 239-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26025061

RESUMO

(13)C Methyl TROSY NMR spectroscopy has emerged as a powerful method for studying the dynamics of large systems such as macromolecular assemblies and membrane proteins. Specific (13)C labeling of aliphatic methyl groups and perdeuteration has been limited primarily to proteins expressed in E. coli, preventing studies of many eukaryotic proteins of physiological and biomedical significance. We demonstrate the feasibility of efficient (13)C isoleucine δ1-methyl labeling in a deuterated background in an established eukaryotic expression host, Pichia pastoris, and show that this method can be used to label the eukaryotic protein actin, which cannot be expressed in bacteria. This approach will enable NMR studies of previously intractable targets.


Assuntos
Isótopos de Carbono/química , Ressonância Magnética Nuclear Biomolecular/métodos , Pichia/metabolismo , Proteínas Recombinantes/química , Actinas/química , Actinas/metabolismo , Isótopos de Carbono/metabolismo , Isoleucina/química , Isoleucina/metabolismo , Proteínas Recombinantes/metabolismo
19.
Proteomics ; 14(10): 1223-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24678018

RESUMO

Lipocalin-type prostaglandin D-synthase (L-PGDS) in cerebrospinal fluid contributes to the maturation and maintenance of the CNS. L-PGDS PTMs may contribute to pathobiology of different CNS diseases, but methods to monitor its proteoforms are limited. Herein, we combined off-gel IEF and superficially porous LC (SPLC) with Fourier transform MS to characterize common cerebrospinal fluid L-PGDS proteoforms. Across 3D physiochemical space (pI, hydrophobicity, and mass), 217 putative proteoforms were observed from 21 to 24 kDa and pI 5-10. Glycoprotein accurate mass information, combined with MS/MS analysis of peptides generated from 2D-fractionated proteoforms, enabled the putative assignment of 208 proteoforms with varied PTM positional occupants. Fifteen structurally related N-glycans at N29 and N56 were observed, with different N-glycan compositional variants being preferred on each amino acid. We also observed that sialic acid content was a major factor for pI shifts between L-PGDS proteoforms. Other putative PTMs characterized include a core-1 HexHexNAc-O-glycan at S7, acetylation at K16 and K138, sulfonation at S41 and T142, and dioxidation at C43 and C145. The IEF-SPLC-MS platform presented provides 30-40× improved peak capacity versus conventional 2DE and shows potential for repeatable proteoform analysis of surrogate PTM-based biomarkers.


Assuntos
Cromatografia Líquida/métodos , Oxirredutases Intramoleculares/líquido cefalorraquidiano , Oxirredutases Intramoleculares/química , Focalização Isoelétrica/métodos , Lipocalinas/líquido cefalorraquidiano , Lipocalinas/química , Espectrometria de Massas/métodos , Humanos , Isoformas de Proteínas/líquido cefalorraquidiano , Isoformas de Proteínas/química , Processamento de Proteína Pós-Traducional
20.
Anal Chem ; 85(21): 10597-604, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24107006

RESUMO

We report novel ligand binding assay (LBA) surface modalities that permit plasma protease catalytic efficiency (kcat/km) determination by MALDI-TOF MS without the use of liquid chromatography or internal standards such as chemical or metalized labels. Two model LBAs were constructed on planar self-assembled monolayers (SAMs) and used to evaluate the clinically relevant metalloprotease ADAMTS-13 kinetics in plasma. The SAM chemistries were designed to improve biosampling efficiency by minimization of nonspecific adsorption of abundant proteins present at ~100,000× the concentration of the endogenous enzyme. In the first protocol, in-solution digestion of the ADAMTS-13 substrate (vWFh) was performed with immunoaffinity enrichment of the reaction substrate and product to SAM arrays. The second configuration examined protease kcat/km via a surface digestion modality where different substrates were covalently immobilized to the SAM at controlled surface density for optimized protease screens. The results show the MALDI-TOF MS LBA platforms provide limits of quantitation to ~1% protease activity (~60 pM enzyme concentration) in <1 h analysis time, a ~16× improvement over other MS-based LBA formats. Implementation of a vacuum-sublimed MALDI matrix provided good MALDI-TOF MS intra- and interday repeatability, ~1.2 and ~6.6% RSD, respectively. Platform reliability permitted kcat/km determination without internal standards with observed values ~10× improved versus conventional fluorophoric assays. Application of the assays to 12 clinical plasma samples demonstrated proof-of-concept for clinical applications. Overall, this work demonstrates that rationally designed surface chemistries for MALDI-TOF MS may serve as an alternative, label-free methodology with potential for a wide range of biotechnology applications related to targeted enzyme molecular diagnostics.


Assuntos
Peptídeo Hidrolases/sangue , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Cinética , Ligantes , Dados de Sequência Molecular , Peptídeo Hidrolases/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...