Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Urology ; 180: 200-208, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37442295

RESUMO

OBJECTIVE: To identify a subgroup of patients with mast cell dysfunction in chronic prostatitis/chronic pelvic pain syndrome and evaluate efficacy of mast cell-directed therapy. MATERIALS AND METHODS: Men with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) were recruited and evaluated in an open-label, interventional uncontrolled trial after therapy with cromolyn sodium and cetirizine hydrochloride. The primary endpoint was a change in mast cell tryptase concentrations after treatment while secondary endpoints were changes in the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) and AUA-SI. Isolated cells from postprostatic massage urine were evaluated for immune changes using mRNA expression analysis. RESULTS: 31 patients with a diagnoses of Category III CP/CPPS were consented, 25 patients qualified and 20 completed the study after meeting a prespecified threshold for active tryptase in expressed prostatic secretions. After treatment with cromolyn sodium and cetirizine dihydrochloride for 3-week, active tryptase concentrations were significantly reduced from 49.03±14.05 ug/mL to 25.49±5.48 ug/mL (P<.05). The NIH-CPSI total score was reduced with a mean difference of 5.2±1 along with reduction in the pain, urinary and quality of life subscores (P<.001). A reduction in the AUA-SI was observed following treatment (P<.05). NanoString mRNA analysis of isolated cells revealed downregulation of immune-related pathways including Th1 and Th17 T cell differentiation and TLR signaling. Marked reduction in CD45+ cells and specifically macrophages and neutrophil abundance was observed. CONCLUSION: Identification of CP/CPPS patients with mast cell dysfunction may be achieved using tryptase as a discriminating biomarker. Mast cell-directed therapy in this targeted subgroup may be effective in reducing symptoms and modulating the immune inflammatory environment.


Assuntos
Dor Crônica , Prostatite , Masculino , Humanos , Dor Crônica/diagnóstico , Prostatite/complicações , Qualidade de Vida , Mastócitos , Triptases , Cromolina Sódica , Células Th17 , Doença Crônica , Dor Pélvica/diagnóstico , RNA Mensageiro
3.
Am J Physiol Renal Physiol ; 321(4): F466-F479, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34423679

RESUMO

Intraurethral inoculation of mice with uropathogenic Escherichia coli (CP1) results in prostate inflammation, fibrosis, and urinary dysfunction, recapitulating some but not all of the pathognomonic clinical features associated with benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). In both patients with LUTS and CP1-infected mice, we observed increased numbers and activation of mast cells and elevated levels of prostate fibrosis. Therapeutic inhibition of mast cells using a combination of a mast cell stabilizer, cromolyn sodium, and the histamine 1 receptor antagonist cetirizine di-hydrochloride in the mouse model resulted in reduced mast cell activation in the prostate and significant alleviation of urinary dysfunction. Treated mice showed reduced prostate fibrosis, less infiltration of immune cells, and decreased inflammation. In addition, as opposed to symptomatic CP1-infected mice, treated mice showed reduced myosin light chain-2 phosphorylation, a marker of prostate smooth muscle contraction. These results show that mast cells play a critical role in the pathophysiology of urinary dysfunction and may be an important therapeutic target for men with BPH/LUTS.NEW & NOTEWORTHY LUTS-associated benign prostatic hyperplasia is derived from a combination of immune activation, extracellular matrix remodeling, hyperplasia, and smooth muscle cell contraction in prostates of men. Using a mouse model, we describe the importance of mast cells in regulating these multiple facets involved in the pathophysiology of LUTS. Mast cell inhibition alleviates both pathology and urinary dysfunction in this model, suggesting the potential for mast cell inhibition as a therapeutic that prevents and reverses pathology and associated symptomology.


Assuntos
Fibrose/patologia , Mastócitos/fisiologia , Miócitos de Músculo Liso/patologia , Doenças Prostáticas/patologia , Animais , Antialérgicos/uso terapêutico , Cetirizina/uso terapêutico , Cromolina Sódica/uso terapêutico , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Fibrose/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Próstata/metabolismo , Próstata/patologia , Doenças Prostáticas/metabolismo , Micção
4.
Front Pain Res (Lausanne) ; 2: 805136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295515

RESUMO

Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS) is a condition that affects a large number of men and has unknown etiology. We have previously demonstrated the presence of elevated levels of mast cell tryptase in expressed prostatic secretions (EPS) of CP/CPPS patients. In a murine model of CP/CPPS, we showed tryptase and its cognate receptor PAR2 as critical to the development of pelvic pain and lower urinary tract symptoms. Here, we extend these observations to demonstrate that an isoform of tryptase called delta (δ)-tryptase, is elevated in the EPS of patients with CP/CPPS and is correlated with pelvic pain symptoms. Using an Escherichia coli (CP1) -induced murine model of CP/CPPS, we demonstrated a differential response in C57BL/6J and NOD/ShiLtJ mice, with C57BL6/J mice being resistant to an increase in pelvic tactile allodynia, despite having equivalent levels of activated mast cells in the prostate. Activated tryptase+ve mast cells were observed to be in closer apposition to PGP9.5+ve nerve fibers in the prostate stroma of NOD/ShiLtJ in comparison to C57BL/6J mice. The mouse ortholog of δ-tryptase, mouse mast cell protease 7 (mMCP7) has been reported to be unexpressed in C57BL/6J mice. We confirmed the absence of mMCP7 in the prostates of C57BL/6J and its presence in NOD/ShiLtJ mice. To evaluate a role for mMCP7 in the differential allodynia responses, we performed direct intra-urethral instillations of mMCP7 and the beta (ß)-tryptase isoform ortholog, mMCP6 in the CP1-infection model. mMCP7, but not mMCP6 was able to induce an acute pelvic allodynia response in C57BL/6J mice. In-vitro studies with mMCP7 on cultured mast cells as well as dissociated primary neurons demonstrated the ability to induce differential activation of pain and inflammation associated molecules compared to mMCP6. We conclude that mMCP7, and possibility its human ortholog δ-tryptase, may play an important role in mediating the development of pelvic tactile allodynia in the mouse model of pelvic pain and in patients with CP/CPPS.

5.
J Leukoc Biol ; 104(4): 811-820, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29749650

RESUMO

IL-1 receptor-associated kinase (IRAK) 4 is a central enzyme of the TLR pathways. This study tested the hypothesis that IRAK4 kinase activity is prerequisite for regulating innate immunity during infections with intracellular bacteria. To this end, we analyzed responses of macrophages obtained from mice expressing wild-type (WT) IRAK4 or its kinase-inactive K213M mutant (IRAK4KI ) upon infection with intracellular bacteria Listeria monocytogenes or Mycobacterium smegmatis. In contrast to robust induction of cytokines by macrophages expressing kinase-sufficient IRAK4, IRAK4KI macrophages expressed decreased TNF-α, IL-6, IL-1ß, and C-C motif chemokine ligand 5 upon infection with L. monocytogenes or M. smegmatis. Bacterial infection of IRAK4KI macrophages led to attenuated activation of IRAK1, MAPKs and NF-κB, impaired induction of inducible NO synthase mRNA and secretion of NO, but resulted in elevated microbial burdens. Compared with WT animals, systemic infection of IRAK4KI mice with M. smegmatis or L. monocytogenes resulted in decreased levels of serum IL-6 and CXCL-1 but increased bacterial burdens in the spleen and liver. Thus, a loss of IRAK4 kinase activity underlies deficient cytokine and microbicidal responses during infection with intracellular bacteria L. monocytogenes or M. smegmatis via impaired activation of IRAK1, MAPKs, and NF-κB but increases bacterial burdens, correlating with decreased induction of NO.


Assuntos
Imunidade Inata , Síndromes de Imunodeficiência/imunologia , Quinases Associadas a Receptores de Interleucina-1/imunologia , Listeriose/imunologia , Macrófagos/microbiologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Animais , Citocinas/metabolismo , Feminino , Síndromes de Imunodeficiência/genética , Quinases Associadas a Receptores de Interleucina-1/deficiência , Quinases Associadas a Receptores de Interleucina-1/genética , Listeria monocytogenes , Listeriose/enzimologia , Fígado/microbiologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Infecções por Mycobacterium não Tuberculosas/enzimologia , Mycobacterium smegmatis , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Doenças da Imunodeficiência Primária , Baço/microbiologia
6.
J Biol Chem ; 292(25): 10685-10695, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28442574

RESUMO

Toll-like receptor 2 (TLR2) plays a critical role in host defenses against mycobacterial infections. The R753Q TLR2 polymorphism has been associated with increased incidence of tuberculosis and infections with non-tuberculous mycobacteria in human populations, but the mechanisms by which this polymorphism affects TLR2 signaling are unclear. In this study, we determined the impact of the R753Q TLR2 polymorphism on macrophage sensing of Mycobacterium smegmatis Upon infection with M. smegmatis, macrophages from knock-in mice harboring R753Q TLR2 expressed lower levels of TNF-α, IL-1ß, IL-6, and IL-10 compared with cells from WT mice, but both R753Q TLR2- and WT-derived macrophages exhibited comparable bacterial burdens. The decreased cytokine responses in R753Q TLR2-expressing macrophages were accompanied by impaired phosphorylation of IL-1R-associated kinase 1 (IRAK-1), p38, ERK1/2 MAPKs, and p65 NF-κB, suggesting that the R753Q TLR2 polymorphism alters the functions of the myeloid differentiation primary response protein 88 (MyD88)-IRAK-dependent signaling axis. Supporting this notion, HEK293 cells stably transfected with YFP-tagged R753Q TLR2 displayed reduced recruitment of MyD88 to TLR2, decreased NF-κB activation, and impaired IL-8 expression upon exposure to M. smegmatis Collectively, our results indicate that the R753Q polymorphism alters TLR2 signaling competence, leading to impaired MyD88-TLR2 assembly, reduced phosphorylation of IRAK-1, diminished activation of MAPKs and NF-κB, and deficient induction of cytokines in macrophages infected with M. smegmatis.


Assuntos
Imunidade Inata , Macrófagos/imunologia , Mutação de Sentido Incorreto , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium smegmatis/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Polimorfismo Genético , Receptor 2 Toll-Like/imunologia , Substituição de Aminoácidos , Animais , Citocinas/genética , Citocinas/imunologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Mutantes , Infecções por Mycobacterium não Tuberculosas/genética , Fator 88 de Diferenciação Mieloide/genética , Receptor 2 Toll-Like/genética
7.
Aging Cell ; 16(3): 585-593, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28371013

RESUMO

Immunosenescence is a state of unbalanced immune responsiveness, characterized by a diverse repertoire of seemingly discreet and paradoxical alterations in all aspects of immunity arising in an aging-associated manner. We asked whether aging-associated alterations in the ability of apoptotic cells to elicit immunomodulatory responses (innate apoptotic immunity; IAI) or in IAI responses themselves might underlie the confounding aging-associated anomalies of immunosenescence. We explored this question by examining, as a function of animal age, responsiveness of murine macrophages on the single cell level. We monitored the expression of pro- and anti-inflammatory cytokines cytofluorimetrically in response to pro-inflammatory Toll-like receptor (TLR) stimulation and anti-inflammatory treatment with apoptotic cells. While we found no alterations with age in the potency of apoptotic cells or in the initiation and magnitude of IAI responses, we did identify a cell-intrinsic deficiency in anti-inflammatory IAI response termination linked with age and preceding manifestations of immunosenescence. Further, we found that an aging-associated deficiency in response termination also is evident following TLR stimulation. These surprising observations reveal that a loss of homeostatic immune control with animal age results from the dysregulation of response termination (as distinct from response initiation) and is exerted on the level of transcription. We suggest that, with advancing age, cells become locked into relatively longer-lived response states. Aging-associated immune dysfunctions may reflect a diminution in the cellular nimbleness of immune responsiveness.


Assuntos
Imunidade Inata , Imunossenescência/genética , Interleucina-10/imunologia , Macrófagos/efeitos dos fármacos , Transcrição Gênica/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fatores Etários , Animais , Apoptose/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Homeostase/genética , Homeostase/imunologia , Humanos , Interleucina-10/genética , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Transdução de Sinais , Análise de Célula Única , Fator de Necrose Tumoral alfa/genética
8.
Microb Pathog ; 105: 218-225, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28242425

RESUMO

Infections by pathogenic microorganisms elicit host immune responses, which crucially limit those infections. Pathogens employ various strategies to evade host immunity. We have identified the exploitation of the repertoire of potent immunosuppressive responses elicited normally by apoptotic cells ("Innate Apoptotic Immunity"; IAI) as one of these strategies. In the case of Listeria monocytogenes, an environmentally ubiquitous, foodborne bacterial pathogen capable of causing life-threatening invasive disease in immunocompromised and elderly individuals, the induction of host cell apoptosis appears to play an important role in pathogenesis. Previous studies have documented extensive lymphocyte apoptosis resulting from L. monocytogenes infection and demonstrated paradoxically that lymphocyte-deficient animals exhibit diminished susceptibility to listerial pathogenicity. We speculated that the triggering of IAI following the induction of host cell apoptosis was responsible for enhanced pathogenesis, and that the administration of exogenous apoptotic cells would serve to exert this effect. Importantly, apoptotic cells, which are not susceptible to L. monocytogenes infection, do not provide a niche for bacterial replication. Our experiments confirm that apoptotic cells, including exogenous apoptotic cells induced to die independently of the pathogen, specifically enhance pathogenesis. The recognition of a role of apoptotic cells and Innate Apoptotic Immunity in microbial pathogenesis provides an intriguing and novel insight for therapeutic approaches for the control of pathogenic infections.


Assuntos
Apoptose/imunologia , Listeria monocytogenes/patogenicidade , Listeriose/imunologia , Listeriose/patologia , Animais , Linhagem Celular , Células Cultivadas , Citocinas/imunologia , Modelos Animais de Doenças , Imunidade Inata , Inflamação/imunologia , Inflamação/patologia , Listeria monocytogenes/imunologia , Listeriose/microbiologia , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Transdução de Sinais
9.
Eur J Immunol ; 47(5): 880-891, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28295231

RESUMO

Interleukin-1 receptor-associated kinase (IRAK) 4 mediates host defense against infections. As an active kinase, IRAK4 elicits full spectra of myeloid differentiation primary response protein (MyD) 88-dependent responses, while kinase-inactive IRAK4 induces a subset of cytokines and negative regulators whose expression is not regulated by mRNA stability. IRAK4 kinase activity is critical for resistance against Streptococcus pneumoniae, but its involvement in autoimmunity is incompletely understood. In this study, we determined the role of IRAK4 kinase activity in murine lupus. Lupus development in BXSB mice expressing the Y chromosome autoimmunity accelerator (Yaa) increased basal and Toll-like receptor (TLR) 4/7-induced phosphorylation of mitogen-activated protein kinases, p65 nuclear factor-κB (NF-κB), enhanced tumor necrosis factor (TNF)-α and C-C motif chemokine ligand (CCL) 5 gene expression in splenic macrophages, but decreased levels of Toll-interacting protein and IRAK-M, without affecting IRAK4 or IRAK1 expression. Mice harboring kinase-inactive IRAK4 on the lupus-prone Yaa background manifested blunted TLR signaling in macrophages and reduced glomerulonephritis, splenomegaly, serum anti-nuclear antibodies, numbers of splenic macrophages, total and TNF-α+ dendritic cells, activated T- and B-lymphocytes, and lower TNF-α expression in macrophages compared with lupus-prone mice with functional IRAK4. Thus, IRAK4 kinase activity contributes to murine lupus and could represent a new therapeutic target.


Assuntos
Autoimunidade , Citocinas/imunologia , Síndromes de Imunodeficiência , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Nefrite Lúpica/imunologia , Animais , Quimiocina CCL5/genética , Quinases Associadas a Receptores de Interleucina-1/deficiência , Macrófagos/imunologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosforilação , Doenças da Imunodeficiência Primária , Transdução de Sinais , Baço/citologia , Baço/imunologia , Receptores Toll-Like/imunologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Mech Ageing Dev ; 157: 44-59, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27453067

RESUMO

Aging is associated with a waning of normal immune function. This "immunosenescence" is characterized by a diverse repertoire of seemingly discreet and unbalanced immune alterations. A number of studies have suggested that aging-associated alterations in innate immune responsiveness, especially responsiveness dependent on Toll-like Receptor (TLR) engagement, are causally involved. We find, however, that the magnitude and dose-dependency of responsiveness to TLR engagement (assessed with respect to cytokine production) in distinct populations of murine macrophages are not altered generally with animal age or as a consequence of immunosenescence. Responses elicited with a wide array of TLR agonists were examined by extensive functional analyses, principally on the level of the individual cell. These studies reveal an intriguing "all-or-nothing" response behavior of macrophages, independent of animal age. Although reports to the contrary have been cited widely, aging-associated immune decline cannot be attributed to widespread alterations in the extents of TLR-dependent innate immune macrophage responses.


Assuntos
Envelhecimento/imunologia , Citocinas/imunologia , Imunidade Inata/fisiologia , Macrófagos/imunologia , Receptores Toll-Like/imunologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Receptores Toll-Like/agonistas
11.
J Innate Immun ; 8(2): 171-84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26457672

RESUMO

Endotoxin tolerance protects the host by limiting excessive 'cytokine storm' during sepsis, but compromises the ability to counteract infections in septic shock survivors. It reprograms Toll-like receptor (TLR) 4 responses by attenuating the expression of proinflammatory cytokines without suppressing anti-inflammatory and antimicrobial mediators, but the mechanisms of reprogramming remain unclear. In this study, we demonstrate that the induction of endotoxin tolerance in human monocytes, THP-1 and MonoMac-6 cells inhibited lipopolysaccharide (LPS)-mediated phosphorylation of Lyn, c-Src and their recruitment to TLR4, but increased total protein phosphatase (PP) activity and the expression of protein tyrosine phosphatase (PTP) 1B, PP2A, PTP nonreceptor type (PTPN) 22 and mitogen-activated protein kinase phosphatase (MKP)-1. Chemical PP inhibitors, okadaic acid, dephostatin and cantharidic acid markedly decreased or completely abolished LPS tolerance, indicating the importance of phosphatases in endotoxin tolerization. Overexpression of PTPN22 decreased LPS-mediated nuclear factor (NF)-x03BA;B activation, p38 phosphorylation and CXCL8 gene expression, while PTPN22 ablation upregulated LPS-induced p65 NF-x03BA;B and p38 phosphorylation and the expression of TNF-α and pro-IL-1ß mRNA, indicating PTPN22 as an inhibitor of TLR4 signaling. Thus, LPS tolerance interferes with TLR4 signaling by inhibiting Lyn and c-Src phosphorylation and their recruitment to TLR4, while increasing the phosphatase activity and expression of PP2A, PTPN22, PTP1B and MKP1.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Tolerância Imunológica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Monócitos/imunologia , Fosfoproteínas Fosfatases/imunologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/imunologia , Quinases da Família src/imunologia , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/imunologia , Humanos , Tolerância Imunológica/genética , Lipopolissacarídeos/imunologia , Fosfoproteínas Fosfatases/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/genética , Quinases da Família src/genética
12.
J Leukoc Biol ; 98(6): 963-74, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26310831

RESUMO

Development of endotoxin tolerance in macrophages during sepsis reprograms Toll-like receptor 4 signaling to inhibit proinflammatory cytokines without suppressing anti-inflammatory and antimicrobial mediators and protects the host from excessive inflammation and tissue damage. However, endotoxin tolerance renders septic patients immunocompromised and unable to control secondary infections. Although previous studies have revealed the importance of several negative regulators of Toll-like receptor signaling in endotoxin tolerance, the role of Pellino proteins has not been addressed. The present report shows that the induction of endotoxin tolerance in vivo in mice and in vitro in human monocytes and THP-1 and MonoMac-6 macrophages increases the expression of Pellino-3. Overexpression of Pellino-3 in human embryonic kidney 293/Toll-like receptor 2 or 293/Toll-like receptor 4/myeloid differentiation factor-2 cells inhibited Toll-like receptor 2/4-mediated activation of nuclear factor-κB and induction of CXCL-8 mRNA, and Pellino-3 ablation increased these responses. Pellino-3-deficient THP-1 cells had elevated Toll-like receptor 2/4-driven tumor necrosis factor-α, interleukin-6 mRNA, and Toll-like receptor 4-driven CCL5 gene expression in response to Toll-like receptor agonists and heat-killed Escherichia coli and Staphylococcus aureus, cytokines controlled by the MyD88 and Toll-interleukin-1R domain-containing protein inducing interferon-ß-mediated pathways, respectively. In addition, deficiency in Pellino-3 slightly increased phagocytosis of heat-killed bacteria. Transfected Pellino-3 inhibited nuclear factor-κB activation driven by overexpression of MyD88, TIR domain-containing adapter inducing interferon-ß, interleukin-1R-associated kinase-1, and tumor necrosis factor receptor activator of nuclear factor-κB-binding kinase-1, TGF-ß-activated kinase 1, and tumor necrosis factor receptor-associated factor-6, and inhibited interleukin-1R-associated kinase 1 modifications and tumor necrosis factor receptor activator of nuclear factor-κB-binding kinase 1 phosphorylation. Finally, Pellino-3 ablation in THP-1 decreased the extent of endotoxin tolerization. Thus, Pellino-3 is involved in endotoxin tolerance and functions as a negative regulator of Toll-like receptor 2/4 signaling.


Assuntos
Tolerância Imunológica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/imunologia , Escherichia coli/imunologia , Humanos , Tolerância Imunológica/genética , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Staphylococcus aureus/imunologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Ubiquitina-Proteína Ligases/genética
13.
J Biol Chem ; 290(31): 19218-32, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26082489

RESUMO

Endotoxin tolerance reprograms Toll-like receptor (TLR) 4-mediated macrophage responses by attenuating induction of proinflammatory cytokines while retaining expression of anti-inflammatory and antimicrobial mediators. We previously demonstrated deficient TLR4-induced activation of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, and TANK-binding kinase (TBK) 1 as critical hallmarks of endotoxin tolerance, but mechanisms remain unclear. In this study, we examined the role of the E3 ubiquitin ligase Pellino-1 in endotoxin tolerance and TLR signaling. LPS stimulation increased Pellino-1 mRNA and protein expression in macrophages from mice injected with saline and in medium-pretreated human monocytes, THP-1, and MonoMac-6 cells, whereas endotoxin tolerization abrogated LPS inducibility of Pellino-1. Overexpression of Pellino-1 in 293/TLR2 and 293/TLR4/MD2 cells enhanced TLR2- and TLR4-induced nuclear factor κB (NF-κB) and expression of IL-8 mRNA, whereas Pellino-1 knockdown reduced these responses. Pellino-1 ablation in THP-1 cells impaired induction of myeloid differentiation primary response protein (MyD88), and Toll-IL-1R domain-containing adapter inducing IFN-ß (TRIF)-dependent cytokine genes in response to TLR4 and TLR2 agonists and heat-killed Escherichia coli and Staphylococcus aureus, whereas only weakly affecting phagocytosis of heat-killed bacteria. Co-expressed Pellino-1 potentiated NF-κB activation driven by transfected MyD88, TRIF, IRAK1, TBK1, TGF-ß-activated kinase (TAK) 1, and TNFR-associated factor 6, whereas not affecting p65-induced responses. Mechanistically, Pellino-1 increased LPS-driven K63-linked polyubiquitination of IRAK1, TBK1, TAK1, and phosphorylation of TBK1 and IFN regulatory factor 3. These results reveal a novel mechanism by which endotoxin tolerance re-programs TLR4 signaling via suppression of Pellino-1, a positive regulator of MyD88- and TRIF-dependent signaling that promotes K63-linked polyubiquitination of IRAK1, TBK1, and TAK1.


Assuntos
Proteínas Nucleares/fisiologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Células HEK293 , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Ativação Transcricional/imunologia , Ubiquitinação
14.
Mol Biol Cell ; 25(11): 1704-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24694594

RESUMO

Apoptotic recognition is innate and linked to a profound immune regulation (innate apoptotic immunity [IAI]) involving anti-inflammatory and immunosuppressive responses. Many of the molecular and mechanistic details of this response remain elusive. Although immune outcomes can be quantified readily, the initial specific recognition events have been difficult to assess. We developed a sensitive, real-time method to detect the recognition of apoptotic cells by viable adherent responder cells, using a photonic crystal biosensor approach. The method relies on characteristic spectral shifts resulting from the specific recognition and dose-dependent interaction of adherent responder cells with nonadherent apoptotic targets. Of note, the biosensor provides a readout of early recognition-specific events in responder cells that occur distal to the biosensor surface. We find that innate apoptotic cell recognition occurs in a strikingly species-independent manner, consistent with our previous work and inferences drawn from indirect assays. Our studies indicate obligate cytoskeletal involvement, although apoptotic cell phagocytosis is not involved. Because it is a direct, objective, and quantitative readout of recognition exclusively, this biosensor approach affords a methodology with which to dissect the early recognition events associated with IAI and immunosuppression.


Assuntos
Apoptose , Técnicas Biossensoriais/métodos , Fótons , Animais , Adesão Celular , Comunicação Celular , Sobrevivência Celular , Cristalização , Citoesqueleto/metabolismo , Humanos , Células Jurkat , Camundongos , Fagocitose , Especificidade da Espécie
15.
J Biol Chem ; 287(17): 13761-77, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22396534

RESUMO

Apoptosis allows for the removal of damaged, aged, and/or excess cells without harm to surrounding tissue. To accomplish this, cells undergoing apoptosis acquire new activities that enable them to modulate the fate and function of nearby cells. We have shown that receptor-mediated recognition of apoptotic versus necrotic target cells by viable kidney proximal tubular epithelial cells (PTEC) modulates the activity of several signaling pathways critically involved in regulation of proliferation and survival. Generally, apoptotic and necrotic targets have opposite effects with apoptotic targets inhibiting and necrotic targets stimulating the activity of these pathways. Here we explore the consequences of these signaling differences. We show that recognition of apoptotic targets induces a profound decrease in PTEC viability through increased responder cell death and decreased proliferation. In contrast, necrotic targets promote viability through decreased death and increased proliferation. Both target types mediate their effects through a network of Akt-dependent and -independent events. Apoptotic targets modulate Akt-dependent viability in part through a reduction in cellular ß-catenin and decreased inactivation of Bad. In contrast, Akt-independent modulation of viability occurs through activation of caspase-8, suggesting that death receptor-dependent pathways are involved. Apoptotic targets also activate p38, which partially protects responders from target-induced death. The response of epithelial cells varies depending on their tissue origin. Some cell lines, like PTEC, demonstrate decreased viability, whereas others (e.g. breast-derived) show increased viability. By acting as sentinels of environmental change, apoptotic targets allow neighboring cells, especially non-migratory epithelial cells, to monitor and potentially adapt to local stresses.


Assuntos
Apoptose , Células Epiteliais/imunologia , Regulação da Expressão Gênica , Animais , Células CHO , Proliferação de Células , Sobrevivência Celular , Cricetinae , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células HeLa , Homeostase , Humanos , Sistema Imunitário , Rim/metabolismo , Necrose , Fagócitos/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
J Biol Chem ; 287(13): 10325-10343, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22262862

RESUMO

The intriguing cell biology of apoptotic cell death results in the externalization of numerous autoantigens on the apoptotic cell surface, including protein determinants for specific recognition, linked to immune responses. Apoptotic cells are recognized by phagocytes and trigger an active immunosuppressive response ("innate apoptotic immunity" (IAI)) even in the absence of engulfment. IAI is responsible for the lack of inflammation associated normally with the clearance of apoptotic cells; its failure also has been linked to inflammatory and autoimmune pathology, including systemic lupus erythematosus and rheumatic diseases. Apoptotic recognition determinants underlying IAI have yet to be identified definitively; we argue that these molecules are surface-exposed (during apoptotic cell death), ubiquitously expressed, protease-sensitive, evolutionarily conserved, and resident normally in viable cells (SUPER). Using independent and unbiased quantitative proteomic approaches to characterize apoptotic cell surface proteins and identify candidate SUPER determinants, we made the surprising discovery that components of the glycolytic pathway are enriched on the apoptotic cell surface. Our data demonstrate that glycolytic enzyme externalization is a common and early aspect of cell death in different cell types triggered to die with distinct suicidal stimuli. Exposed glycolytic enzyme molecules meet the criteria for IAI-associated SUPER determinants. In addition, our characterization of the apoptosis-specific externalization of glycolytic enzyme molecules may provide insight into the significance of previously reported cases of plasminogen binding to α-enolase on mammalian cells, as well as mechanisms by which commensal bacteria and pathogens maintain immune privilege.


Assuntos
Apoptose , Glicólise , Imunidade Inata , Animais , Biomarcadores/metabolismo , Humanos , Células Jurkat , Lúpus Eritematoso Sistêmico/enzimologia , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Proteômica , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...