Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 12(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217941

RESUMO

Stat5 is of significant interest in the search for new therapeutics for prostate cancer (PC) and hematopoietic disorders. We evaluated the transcriptomic specificity of the Stat5a/b inhibitor IST5-002 (IST5) in PC, defined more closely its mechanisms of action, and investigated the in vivo toxicity of IST5 for further optimization for clinical development. The transcriptomic specificity of IST5 vs. genetic Stat5 knockdown was evaluated by RNA-seq analysis, which showed high similarity with the Pearson correlation coefficient ranging from 0.98-0.99. The potency of IST5 vs. its derivative lacking the phosphate group in suppressing Stat5 was evaluated in two separate but complementary assays. The inhibitory activity of IST5 against kinases was investigated in cell-free assays followed by more focused evaluation in a cell-based assay. IST5 has no specific inhibitory activity against 54 kinases, while suppressing Stat5 phosphorylation and subsequent dimerization in PC cells. The phosphate group was not critical for the biological activity of IST5 in cells. The acute, sub-chronic and chronic toxicity studies of IST5 were carried out in mice. IST5 did not cause any significant toxic effects or changes in the blood profiles. The present work supports further optimization of IST5 for oral bioavailability for clinical development for therapies for solid tumors, hematological and myeloproliferative disorders.

2.
Bioinformatics ; 36(12): 3941-3943, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324859

RESUMO

SUMMARY: Glycoinformatics plays a major role in glycobiology research, and the development of a comprehensive glycoinformatics knowledgebase is critical. This application note describes the GlyGen data model, processing workflow and the data access interfaces featuring programmatic use case example queries based on specific biological questions. The GlyGen project is a data integration, harmonization and dissemination project for carbohydrate and glycoconjugate-related data retrieved from multiple international data sources including UniProtKB, GlyTouCan, UniCarbKB and other key resources. AVAILABILITY AND IMPLEMENTATION: GlyGen web portal is freely available to access at https://glygen.org. The data portal, web services, SPARQL endpoint and GitHub repository are also freely available at https://data.glygen.org, https://api.glygen.org, https://sparql.glygen.org and https://github.com/glygener, respectively. All code is released under license GNU General Public License version 3 (GNU GPLv3) and is available on GitHub https://github.com/glygener. The datasets are made available under Creative Commons Attribution 4.0 International (CC BY 4.0) license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Conhecimento , Software , Glicômica , Armazenamento e Recuperação da Informação , Fluxo de Trabalho
4.
Cell Death Discov ; 5: 118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341644

RESUMO

Autosomal recessive mutations in Anoctamin 5 (ANO5/TMEM16E), a member of the transmembrane 16 (TMEM16) family of Ca2+-activated ion channels and phospholipid scramblases, cause adult-onset muscular dystrophies (limb girdle muscular dystrophy 2L (LGMD2L) and Miyoshi Muscular Dystrophy (MMD3). However, the molecular role of ANO5 is unclear and ANO5 knockout mouse models show conflicting requirements of ANO5 in muscle. To study the role of ANO5 in human muscle cells we generated a myoblast line from a MMD3-patient carrying the c.2272C>T mutation, which we find causes the mutant protein to be degraded. The patient myoblasts exhibit normal myogenesis, but are compromised in their plasma membrane repair (PMR) ability. The repair deficit is linked to the poor ability of the endoplasmic reticulum (ER) to clear cytosolic Ca2+ increase caused by focal plasma membrane injury. Expression of wild-type ANO5 or pharmacological prevention of injury-triggered cytosolic Ca2+ overload enable injured patient muscle cells to repair. A homology model of ANO5 shows that several of the known LGMD2L/MMD3 patient mutations line the transmembrane region of the protein implicated in its channel activity. These results point to a role of cytosolic Ca2+ homeostasis in PMR, indicate a role for ANO5 in ER-mediated cytosolic Ca2+ uptake and identify normalization of cytosolic Ca2+ homeostasis as a potential therapeutic approach to treat muscular dystrophies caused by ANO5 deficit.

5.
Gastroenterology ; 154(1): 195-210, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28918914

RESUMO

BACKGROUND & AIMS: Development of hepatocellular carcinoma (HCC) is associated with alterations in the transforming growth factor-beta (TGF-ß) signaling pathway, which regulates liver inflammation and can have tumor suppressor or promoter activities. Little is known about the roles of specific members of this pathway at specific of HCC development. We took an integrated approach to identify and validate the effects of changes in this pathway in HCC and identify therapeutic targets. METHODS: We performed transcriptome analyses for a total of 488 HCCs that include data from The Cancer Genome Atlas. We also screened 301 HCCs reported in the Catalogue of Somatic Mutations in Cancer and 202 from Cancer Genome Atlas for mutations in genome sequences. We expressed mutant forms of spectrin beta, non-erythrocytic 1 (SPTBN1) in HepG2, SNU398, and SNU475 cells and measured phosphorylation, nuclear translocation, and transcriptional activity of SMAD family member 3 (SMAD3). RESULTS: We found somatic mutations in at least 1 gene whose product is a member of TGF-ß signaling pathway in 38% of HCC samples. SPTBN1 was mutated in the largest proportion of samples (12 of 202, 6%). Unsupervised clustering of transcriptome data identified a group of HCCs with activation of the TGF-ß signaling pathway (increased transcription of genes in the pathway) and a group of HCCs with inactivation of TGF-ß signaling (reduced expression of genes in this pathway). Patients with tumors with inactivation of TGF-ß signaling had shorter survival times than patients with tumors with activation of TGF-ß signaling (P = .0129). Patterns of TGF-ß signaling correlated with activation of the DNA damage response and sirtuin signaling pathways. HepG2, SNU398, and SNU475 cells that expressed the D1089Y mutant or with knockdown of SPTBN1 had increased sensitivity to DNA crosslinking agents and reduced survival compared with cells that expressed normal SPTBN1 (controls). CONCLUSIONS: In genome and transcriptome analyses of HCC samples, we found mutations in genes in the TGF-ß signaling pathway in almost 40% of samples. These correlated with changes in expression of genes in the pathways; up-regulation of genes in this pathway would contribute to inflammation and fibrosis, whereas down-regulation would indicate loss of TGF-ß tumor suppressor activity. Our findings indicate that therapeutic agents for HCCs can be effective, based on genetic features of the TGF-ß pathway; agents that block TGF-ß should be used only in patients with specific types of HCCs.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mutação/genética , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Idoso , Carcinoma Hepatocelular/mortalidade , Estudos de Casos e Controles , Análise por Conglomerados , Feminino , Humanos , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade
6.
Bioorg Med Chem ; 25(20): 5477-5482, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28830719

RESUMO

The recent emergence of multidrug-resistant Acinetobacter baumannii strains and the non-efficacy of currently available antibiotics against such infections have led to an urgent need for the development of novel antibacterials. In an effort to address this problem, we have identified three novel inhibitors, namely, D5, D12 and D6 using in silico screening with a homology model of the outer membrane protein W2 (OmpW2) from A. baumannii, as the proposed new drug target. OmpW is an eight-stranded ß-barrel protein involved in the transport of hydrophobic molecules across the outer membrane and maintenance of homeostasis under cellular stress. The antimicrobial activities of compounds D5, D12 and D6 were evaluated against a panel of clinical isolates of A. baumannii strains. These compounds inhibited the growth of the strains with minimum inhibitory concentration (MIC) ranges of 1-32µg/mL. Time-kill kinetic studies with the highly virulent and multidrug-resistant strain, A. baumannii 5075, indicated that D6 exhibited the highest bactericidal activity asa≥3log10 CFU/mL (99.9%) reduction in colony count from the initial inoculum was observed after 30min incubation. D5 and D12 reduced at least 1log10 CFU/mL (90%) of the initial inoculum after 24h. In conclusion, these three lead inhibitors have provided two distinct chemical scaffolds for further analog design and optimizations, using chemical synthesis, to develop more potent inhibitors of the pathogen.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Descoberta de Drogas , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Cinética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Fatores de Tempo
7.
Nat Commun ; 8: 14612, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266544

RESUMO

Defective lysosomal acidification contributes to virtually all lysosomal storage disorders (LSDs) and to common neurodegenerative diseases like Alzheimer's and Parkinson's. Despite its fundamental importance, the mechanism(s) underlying this defect remains unclear. The v-ATPase, a multisubunit protein complex composed of cytosolic V1-sector and lysosomal membrane-anchored V0-sector, regulates lysosomal acidification. Mutations in the CLN1 gene, encoding PPT1, cause a devastating neurodegenerative LSD, INCL. Here we report that in Cln1-/- mice, which mimic INCL, reduced v-ATPase activity correlates with elevated lysosomal pH. Moreover, v-ATPase subunit a1 of the V0 sector (V0a1) requires palmitoylation for interacting with adaptor protein-2 (AP-2) and AP-3, respectively, for trafficking to the lysosomal membrane. Notably, treatment of Cln1-/- mice with a thioesterase (Ppt1)-mimetic, NtBuHA, ameliorated this defect. Our findings reveal an unanticipated role of Cln1 in regulating lysosomal targeting of V0a1 and suggest that varying factors adversely affecting v-ATPase function dysregulate lysosomal acidification in other LSDs and common neurodegenerative diseases.


Assuntos
Hidroxilaminas/uso terapêutico , Doenças por Armazenamento dos Lisossomos/enzimologia , Lisossomos/metabolismo , Tioléster Hidrolases/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Endossomos/enzimologia , Células HEK293 , Humanos , Lipoilação , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Camundongos , Distribuição Aleatória
8.
Mol Cancer Ther ; 14(8): 1777-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26026053

RESUMO

Bypassing tyrosine kinases responsible for Stat5a/b phosphorylation would be advantageous for therapy development for Stat5a/b-regulated cancers. Here, we sought to identify small molecule inhibitors of Stat5a/b for lead optimization and therapy development for prostate cancer and Bcr-Abl-driven leukemias. In silico screening of chemical structure databases combined with medicinal chemistry was used for identification of a panel of small molecule inhibitors to block SH2 domain-mediated docking of Stat5a/b to the receptor-kinase complex and subsequent phosphorylation and dimerization. We tested the efficacy of the lead compound IST5-002 in experimental models and patient samples of two known Stat5a/b-driven cancers, prostate cancer and chronic myeloid leukemia (CML). The lead compound inhibitor of Stat5-002 (IST5-002) prevented both Jak2 and Bcr-Abl-mediated phosphorylation and dimerization of Stat5a/b, and selectively inhibited transcriptional activity of Stat5a (IC50 = 1.5µmol/L) and Stat5b (IC50 = 3.5 µmol/L). IST5-002 suppressed nuclear translocation of Stat5a/b, binding to DNA and Stat5a/b target gene expression. IST5-002 induced extensive apoptosis of prostate cancer cells, impaired growth of prostate cancer xenograft tumors, and induced cell death in patient-derived prostate cancers when tested ex vivo in explant organ cultures. Importantly, IST5-002 induced robust apoptotic death not only of imatinib-sensitive but also of imatinib-resistant CML cell lines and primary CML cells from patients. IST5-002 provides a lead structure for further chemical modifications for clinical development for Stat5a/b-driven solid tumors and hematologic malignancies.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Neoplasias da Próstata/metabolismo , Relação Quantitativa Estrutura-Atividade , Fator de Transcrição STAT5/química , Proteínas Supressoras de Tumor/química , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Análise por Conglomerados , Bases de Dados Factuais , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica , Perfilação da Expressão Gênica , Genes Reporter , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Masculino , Camundongos , Modelos Moleculares , Conformação Molecular , Fosforilação , Neoplasias da Próstata/tratamento farmacológico , Multimerização Proteica , Fator de Transcrição STAT5/antagonistas & inibidores , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Técnicas de Cultura de Tecidos , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Bioorg Med Chem Lett ; 25(10): 2238-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25881818

RESUMO

In recent years, Acinetobacter baumannii has emerged as a major cause of nosocomial infections, including infections of implanted medical devices. The treatment of infections caused by A. baumannii has been severely hampered due to their frequent resistance to currently available antibiotics, and most importantly the ability of A. baumannii to form biofilms, which plays a significant role in both persistence and antibiotic resistance. The inherent resistance of A. baumannii biofilms to host defenses and antimicrobial agents necessitates the search for novel approaches to deter biofilm formation. Here, we report our findings on nine compounds identified from structure-activity relationship (SAR) studies on an antibiofilm compound LP3134 that was reported earlier by Biofouling2014, 30, 17. Compounds were evaluated for antibiofilm and anti-adherence activities against A. baumannii. The ability of the compounds to prevent biofilm development on urinary catheters was studied. Growth curve experiments indicated that compounds did not affect the planktonic growth of A. baumannii. All compounds inhibited A. baumannii biofilm development as well as impacting early adhesion on abiotic surfaces. Seven compounds were able to deter biofilm development on silicone catheters. Due to the continued rise of emerging multidrug-resistant A. baumannii, results from this study provide foundation for further development of these molecules to treat A. baumannii infections in wounds and medical devices.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Hidrazinas/síntese química , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Linhagem Celular , Humanos , Hidrazinas/farmacologia , Camundongos , Células RAW 264.7 , Relação Estrutura-Atividade
10.
J Biomol Struct Dyn ; 33(8): 1682-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25245635

RESUMO

Hepatitis C virus (HCV) is the leading cause of chronic liver disease in humans. The envelope proteins of HCV are potential candidates for vaccine development. The absence of three-dimensional (3D) structures for the functional domain of HCV envelope proteins [E1.E2] monomer complex has hindered overall understanding of the virus infection, and also structure-based drug design initiatives. In this study, we report a 3D model containing both E1 and E2 proteins of HCV using the recently published structure of the core domain of HCV E2 and the functional part of E1, and investigate immunogenic implications of the model. HCV [E1.E2] molecule is modeled by using aa205-319 of E1 to aa421-716 of E2. Published experimental data were used to further refine the [E1.E2] model. Based on the model, we predict 77 exposed residues and several antigenic sites within the [E1.E2] that could serve as vaccine epitopes. This study identifies eight peptides which have antigenic propensity and have two or more sequentially exposed amino acids and 12 singular sites are under negative selection pressure that can serve as vaccine or therapeutic targets. Our special interest is 285FLVGQLFTFSPRRHW299 which has five negatively selected sites (L286, V287, G288, T292, and G303) with three of them sequential and four amino acids exposed (F285, L286, T292, and R296). This peptide in the E1 protein maps to dengue envelope vaccine target identified previously by our group. Our model provides for the first time an overall view of both the HCV envelope proteins thereby allowing researchers explore structure-based drug design approaches.


Assuntos
Modelos Moleculares , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Epitopos/química , Epitopos/imunologia , Humanos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Conformação Proteica , Alinhamento de Sequência , Relação Estrutura-Atividade , Proteínas do Envelope Viral/imunologia
11.
Biofouling ; 30(1): 17-28, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24117391

RESUMO

Biofilm formation by pathogenic bacteria is an important virulence factor in the development of numerous chronic infections, thereby causing a severe health burden. Many of these infections cannot be resolved, as bacteria in biofilms are resistant to the host's immune defenses and antibiotic therapy. An urgent need for new strategies to treat biofilm-based infections is critically needed. Cyclic di-GMP (c-di-GMP) is a widely conserved second-messenger signal essential for biofilm formation. The absence of this signalling system in higher eukaryotes makes it an attractive target for the development of new anti-biofilm agents. In this study, the results of an in silico pharmacophore-based screen to identify small-molecule inhibitors of diguanylate cyclase (DGC) enzymes that synthesize c-di-GMP are described. Four small molecules, LP 3134, LP 3145, LP 4010 and LP 1062 that antagonize these enzymes and inhibit biofilm formation by Pseudomonas aeruginosa and Acinetobacter baumannii in a continuous-flow system are reported. All four molecules dispersed P. aeruginosa biofilms and inhibited biofilm development on urinary catheters. One molecule dispersed A. baumannii biofilms. Two molecules displayed no toxic effects on eukaryotic cells. These molecules represent the first compounds identified from an in silico screen that are able to inhibit DGC activity to prevent biofilm formation.


Assuntos
Biofilmes/efeitos dos fármacos , Proteínas de Escherichia coli/antagonistas & inibidores , Fósforo-Oxigênio Liases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/fisiologia , Simulação por Computador , GMP Cíclico/metabolismo , GMP Cíclico/fisiologia , Células HEK293 , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Bibliotecas de Moléculas Pequenas
12.
Chem Biol Interact ; 203(1): 24-9, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23044488

RESUMO

Human serum butyrylcholinesterase (HuBChE) is currently the most suitable bioscavenger for the prophylaxis of highly toxic organophosphate (OP) nerve agents. A dose of 200mg of HuBChE is envisioned as a prophylactic treatment that can protect humans from an exposure of up to 2 × LD50 of soman. The limited availability and administration of multiple doses of this stoichiometric bioscavenger make this pretreatment difficult. Thus, the goal of this study was to produce a smaller enzymatically active HuBChE polypeptide (HBP) that could bind to nerve agents with high affinity thereby reducing the dose of enzyme. Studies have indicated that the three-dimensional structure and the domains of HuBChE (acyl pocket, lip of the active center gorge, and the anionic substrate-binding domain) that are critical for the binding of substrate are also essential for the selectivity and binding of inhibitors including OPs. Therefore, we designed three HBPs by deleting some N- and C-terminal residues of HuBChE by maintaining the folds of the active site core that includes the three active site residues (S198, E325, and H438). HBP-4 that lacks 45 residues from C-terminus but known to have BChE activity was used as a control. The cDNAs for the HBPs containing signal sequences were synthesized, cloned into different mammalian expression vectors, and recombinant polypeptides were transiently expressed in different cell lines. No BChE activity was detected in the culture media of cells transfected with any of the newly designed HBPs, and the inactive polypeptides remained inside the cells. Only enzymatically active HBP-4 was secreted into the culture medium. These results suggest that residues at the N- and C-termini are required for the folding and/or maintenance of HBP into an active stable, conformation.


Assuntos
Butirilcolinesterase/química , Aminoácidos/química , Butirilcolinesterase/genética , Butirilcolinesterase/metabolismo , Butirilcolinesterase/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Compostos Organofosforados/antagonistas & inibidores , Compostos Organofosforados/toxicidade , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Deleção de Sequência , Soman/antagonistas & inibidores , Soman/toxicidade
13.
PLoS One ; 7(11): e48243, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133622

RESUMO

Several human diseases including neurodegenerative disorders and cancer are associated with abnormal accumulation and aggregation of misfolded proteins. Proteins with high tendency to aggregate include the p53 gene product, TAU and alpha synuclein. The potential toxicity of aberrantly folded proteins is limited via their transport into intracellular sub-compartments, the aggresomes, where misfolded proteins are stored or cleared via autophagy. We have identified a region of the acetyltransferase p300 that is highly disordered and displays similarities with prion-like domains. We show that this region is encoded as an alternative spliced variant independently of the acetyltransferase domain, and provides an interaction interface for various misfolded proteins, promoting their aggregation. p300 enhances aggregation of TAU and of p53 and is a component of cellular aggregates in both tissue culture cells and in alpha-synuclein positive Lewy bodies of patients affected by Parkinson disease. Down-regulation of p300 impairs aggresome formation and enhances cytotoxicity induced by misfolded protein stress. These data unravel a novel activity of p300, offer new insights into the function of disordered domains and implicate p300 in pathological aggregation that occurs in neurodegeneration and cancer.


Assuntos
Fatores de Transcrição de p300-CBP/química , Processamento Alternativo , Sequência de Aminoácidos , Animais , Autofagia , Células COS , Chlorocebus aethiops , Regulação para Baixo , Humanos , Corpos de Lewy/metabolismo , Dados de Sequência Molecular , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Príons/química , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , alfa-Sinucleína/metabolismo , Fatores de Transcrição de p300-CBP/fisiologia
14.
Biochim Biophys Acta ; 1824(5): 701-10, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22401958

RESUMO

Senescence marker protein-30 (SMP-30) is a candidate enzyme that can function as a catalytic bioscavenger of organophosphorus (OP) nerve agents. We purified SMP-30 from mouse (Mo) liver and compared its hydrolytic activity towards various esters, lactones, and G-type nerve agents with that of human paraoxonase1 (Hu PON1) and squid diisopropylfluorophosphatase (DFPase). All three enzymes contain one or two metal ions in their active sites and fold into six-bladed ß-propeller structures. While Hu PON1 hydrolyzed a variety of lactones, the only lactone that was a substrate for Mo SMP-30 was d-(+)-gluconic acid δ-lactone. Squid DFPase was much more efficient at hydrolyzing DFP and G-type nerve agents as compared to Mo SMP-30 or Hu PON1. The K(m) values for DFP were in the following order: Mo SMP-30>Hu PON1>squid DFPase, suggesting that the efficiency of DFP hydrolysis may be related to its binding in the active sites of these enzymes. Thus, homology modeling and docking were used to simulate the binding of DFP and selected δ-lactones in the active sites of Hu SMP-30, Hu PON1, and squid DFPase. Results from molecular modeling studies suggest that differences in metal-ligand coordinations, the hydrophobicity of the binding pockets, and limited space in the binding pocket due to the presence of a loop, are responsible for substrate specificities of these enzymes.


Assuntos
Aminoácidos/química , Arildialquilfosfatase/química , Proteínas de Ligação ao Cálcio/química , Substâncias para a Guerra Química/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Isoflurofato/química , Hidrolases de Triester Fosfórico/química , Aminoácidos/metabolismo , Animais , Arildialquilfosfatase/metabolismo , Cálcio/química , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Domínio Catalítico , Substâncias para a Guerra Química/metabolismo , Decapodiformes/química , Decapodiformes/enzimologia , Ésteres/química , Ésteres/metabolismo , Humanos , Hidrólise , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isoflurofato/metabolismo , Cinética , Lactonas/química , Lactonas/metabolismo , Fígado/química , Fígado/enzimologia , Magnésio/química , Magnésio/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Hidrolases de Triester Fosfórico/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
15.
J Biol Chem ; 285(51): 40342-50, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20956529

RESUMO

DACH1 (Dachshund homolog 1) is a key component of the retinal determination gene network and regulates gene expression either indirectly as a co-integrator or through direct DNA binding. The current studies were conducted to understand, at a higher level of resolution, the mechanisms governing DACH1-mediated transcriptional repression via DNA sequence-specific binding. DACH1 repressed gene transcription driven by the DACH1-responsive element (DRE). Recent genome-wide ChIP-Seq analysis demonstrated DACH1 binding sites co-localized with Forkhead protein (FOX) binding sites. Herein, DACH1 repressed, whereas FOX proteins enhanced, both DRE and FOXA-responsive element-driven gene expression. Reduced DACH1 expression using a shRNA approach enhanced FOX protein activity. As DACH1 antagonized FOX target gene expression and attenuated FOX signaling, we sought to identify limiting co-integrator proteins governing DACH1 signaling. Proteomic analysis identified transcription elongation regulator 1 (TCERG1) as the transcriptional co-regulator of DACH1 activity. The FF2 domain of TCERG1 was required for DACH1 binding, and the deletion of FF2 abolished DACH1 trans-repression function. The carboxyl terminus of DACH1 was necessary and sufficient for TCERG1 binding. Thus, DACH1 represses gene transcription through direct DNA binding to the promoter region of target genes by recruiting the transcriptional co-regulator, TCERG1.


Assuntos
DNA/metabolismo , Proteínas do Olho/metabolismo , Proteínas Repressoras/metabolismo , Elementos de Resposta/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , DNA/genética , Proteínas do Olho/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Células HeLa , Humanos , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/genética
16.
Biochem Pharmacol ; 80(9): 1427-36, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20655881

RESUMO

The toxicity of organophosphorus (OP) nerve agents is manifested through irreversible inhibition of acetylcholinesterase (AChE) at the cholinergic synapses, which stops nerve signal transmission, resulting in a cholinergic crisis and eventually death of the poisoned person. Oxime compounds used in nerve agent antidote regimen reactivate nerve agent-inhibited AChE and halt the development of this cholinergic crisis. Due to diversity in structures of OP nerve agents, none of the currently available oximes is able to reactivate AChE inhibited by different nerve agents. To understand the mechanism for the differential activities of oximes toward AChE inhibited by diverse nerve agents in order to aid the design of new broad-spectrum AChE reactivators, we undertook site-directed mutagenesis and molecular modeling studies. Recombinant wild-type and mutant bovine (Bo) AChEs were inhibited by two bulky side-chain nerve agents, GF and VR, and used for conducting reactivation kinetics with five oximes. A homology model for wild-type Bo AChE was built using the recently published crystal structure of human AChE and used to generate models of 2-PAM and HI-6 bound to the active-sites of GF- and VR-inhibited Bo AChEs before nucleophilic attack. Results revealed that the peripheral anionic site (PAS) of AChE as a whole plays a critical role in the reactivation of nerve agent-inhibited AChE by all 4 bis-pyridinium oximes examined, but not by the mono-pyridinium oxime 2-PAM. Of all the residues at the PAS, Y124 appears to be critical for the enhanced reactivation potency of H oximes.


Assuntos
Acetilcolinesterase/metabolismo , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Oximas/farmacologia , Animais , Bovinos , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade
17.
Brain Res ; 1335: 1-13, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20385109

RESUMO

N-acetylaspartate (NAA) is a concentrated, neuron-specific brain metabolite routinely used as a magnetic resonance spectroscopy marker for brain injury and disease. Despite decades of research, the functional roles of NAA remain unclear. Biochemical investigations over several decades have associated NAA with myelin lipid synthesis and energy metabolism. However, studies have been hampered by an inability to identify the gene for the NAA biosynthetic enzyme aspartate N-acetyltransferase (Asp-NAT). A very recent report has identified Nat8l as the gene encoding Asp-NAT and confirmed that the only child diagnosed with a lack of NAA on brain magnetic resonance spectrograms has a 19-bp deletion in this gene. Based on in vitro Nat8l expression studies the researchers concluded that many previous biochemical investigations have been technically flawed and that NAA may not be associated with brain energy or lipid metabolism. In studies done concurrently in our laboratory we have demonstrated via cloning, expression, specificity for acetylation of aspartate, responsiveness to methamphetamine treatment, molecular modeling and comparative immunolocalization that NAT8L is the NAA biosynthetic enzyme Asp-NAT. We conclude that NAA is a major storage and transport form of acetyl coenzyme A specific to the nervous system, thus linking it to both lipid synthesis and energy metabolism.


Assuntos
Acetilcoenzima A/metabolismo , Acetiltransferases/biossíntese , Ácido Aspártico/análogos & derivados , Metanfetamina/farmacologia , Neurônios/enzimologia , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Ácido Aspártico/biossíntese , Linhagem Celular , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/enzimologia , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato/genética
18.
Mol Cancer Ther ; 7(11): 3539-45, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18974393

RESUMO

The p75 neurotrophin receptor (p75(NTR)) functions as a tumor suppressor in prostate epithelial cells, where its expression declines with progression to malignant cancer. Previously, we showed that treatment with R-flurbiprofen or ibuprofen induced p75(NTR) expression in several prostate cancer cell lines leading to p75(NTR)-mediated decreased survival. Using the 2-phenyl propionic acid moiety of these profens as a pharmacophore, we screened an in silico database of 30 million compounds and identified carprofen as having an order of magnitude greater activity for induction of p75(NTR) levels and inhibition of cell survival. Prostate (PC-3 and DU-145) and bladder (T24) cancer cells were more sensitive to carprofen induction of p75(NTR)-associated loss of survival than breast (MCF-7) and fibroblast (3T3) cells. Transfection of prostate cell lines with a dominant-negative form of p75(NTR) before carprofen treatment partially rescued cell survival, showing a cause-and-effect relationship between carprofen induction of p75(NTR) levels and inhibition of survival. Carprofen induced apoptotic nuclear fragmentation in prostate but not in MCF-7 and 3T3 cells. Furthermore, small interfering RNA knockdown of the p38 mitogen-activated protein kinase (MAPK) protein prevented induction of p75(NTR) by carprofen in both prostate cell lines. Carprofen treatment induced phosphorylation of p38 MAPK as early as within 1 min. Expression of a dominant-negative form of MK2, the kinase downstream of p38 MAPK frequently associated with signaling cascades leading to apoptosis, prevented carprofen induction of the p75(NTR) protein. Collectively, we identify carprofen as a highly potent profen capable of inducing p75(NTR)-dependent apoptosis via the p38 MAPK pathway in prostate cancer cells.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Apoptose , Carbazóis/farmacologia , Neoplasias da Próstata/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células 3T3 , Animais , Humanos , Masculino , Camundongos , Fosforilação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Receptor de Fator de Crescimento Neural/genética , Transfecção , Células Tumorais Cultivadas , Proteínas Quinases p38 Ativadas por Mitógeno/genética
19.
Antimicrob Agents Chemother ; 52(9): 3385-93, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18606844

RESUMO

West Nile virus and dengue virus are mosquito-borne flaviviruses that cause a large number of human infections each year. No vaccines or chemotherapeutics are currently available. These viruses encode a serine protease that is essential for polyprotein processing, a required step in the viral replication cycle. In this study, a high-throughput screening assay for the West Nile virus protease was employed to screen approximately 32,000 small-molecule compounds for identification of inhibitors. Lead inhibitor compounds with three distinct core chemical structures (1 to 3) were identified. In a secondary screening of selected compounds, two compounds, belonging to the 8-hydroxyquinoline family (compounds A and B) and containing core structure 1, were identified as potent inhibitors of the West Nile virus protease, with K(i) values of 3.2 +/- 0.3 microM and 3.4 +/- 0.6 microM, respectively. These compounds inhibited the dengue virus type 2 protease with K(i) values of 28.6 +/- 5.1 microM and 30.2 +/- 8.6 microM, respectively, showing some selectivity in the inhibition of these viral proteases. However, the compounds show no inhibition of cellular serine proteases, trypsin, or factor Xa. Kinetic analysis and molecular docking of compound B onto the known crystal structure of the West Nile virus protease indicate that the inhibitor binds in the substrate-binding cleft. Furthermore, compound B was capable of inhibiting West Nile virus RNA replication in cultured Vero cells (50% effective concentration, 1.4 +/- 0.4 microM; selectivity index, 100), presumably by inhibition of polyprotein processing.


Assuntos
Antivirais , Serina Endopeptidases/efeitos dos fármacos , Inibidores de Serina Proteinase , Vírus do Nilo Ocidental/efeitos dos fármacos , Vírus do Nilo Ocidental/enzimologia , Animais , Antivirais/química , Antivirais/farmacologia , Chlorocebus aethiops , Cricetinae , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , RNA Viral/metabolismo , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Relação Estrutura-Atividade , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Vírus do Nilo Ocidental/fisiologia
20.
Biochemistry ; 46(26): 7765-80, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17555331

RESUMO

The cellular mechanisms that modulate the redox state of p53 tumor suppressor remain unclear, although its DNA binding function is known to be strongly inhibited by oxidative and nitrosative stresses. We show that human p53 is subjected to a new and reversible posttranslational modification, namely, S-glutathionylation in stressed states, including DNA damage. First, a rapid and direct incorporation of biotinylated GSH or GSSG into the purified recombinant p53 protein was observed. The modified p53 had a significantly weakened ability to bind its consensus DNA sequence. Reciprocal immunoprecipitations and a GST overlay assay showed that p53 in tumor cells was marginally glutathionylated; however, the level of modification increased greatly after oxidant and DNA-damaging treatments. GSH modification coexisted with the serine phophorylations in activated p53, and the thiol-conjugated protein was present in nuclei. When tumor cells treated with camptothecin or cisplatin were subsequently exposed to glutathione-enhancing agents, p53 underwent dethiolation accompanied by detectable increases in the level of p21waf1 expression, relative to the DNA-damaging drugs alone. Mass spectrometry of GSH-modified p53 protein identified cysteines 124, 141, and 182, all present in the proximal DNA-binding domain, as the sites of glutathionylation. Biotinylated maleimide also reacted rapidly with Cys141, implying that this is the most reactive cysteine on the p53 surface. The glutathionylatable cysteines were found to exist in a negatively charged microenvironment in cellular p53. Molecular modeling studies located Cys124 and -141 at the dimer interface of p53 and showed glutathionylation of either residue would inhibit p53-DNA association and also interfere with protein dimerization. These results show for the first time that shielding of reactive cysteines contributes to a negative regulation for human p53 and imply that such an inactivation of the transcription factor may represent an acute defensive response with significant consequences for oncogenesis.


Assuntos
Cisteína/química , Glutationa/química , Estresse Oxidativo/fisiologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Acetilcisteína/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Butionina Sulfoximina/farmacologia , Camptotecina/farmacologia , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Diamida/farmacologia , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Glutaral/química , Glutationa/análogos & derivados , Glutationa/farmacologia , Dissulfeto de Glutationa/química , Humanos , Peróxido de Hidrogênio/farmacologia , Modelos Moleculares , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem , terc-Butil Hidroperóxido/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...