Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37259428

RESUMO

In this present research, an attempt has been made to address the influence of drug-coformer stoichiometric ratio on cocrystal design and its impact on improvement of solubility and dissolution, as well as bioavailability of poorly soluble telmisartan. The chemistry behind cocrystallization and the optimization of drug-coformer molar ratio were explored by the molecular docking approach, and theoretical were implemented practically to solve the solubility as well as bioavailability related issues of telmisartan. A new multicomponent solid form, i.e., cocrystal, was fabricated using different molar ratios of telmisartan and maleic acid, and characterized by SEM, DSC and XRD studies. The molecular docking study suggested that specific molar ratios of drug-coformer can successfully cluster with each other and form a specific geometry with favourable energy conformation to form cocrystals. Synthesized telmisartan-maleic acid cocrystals showed remarkable improvement in solubility and dissolution of telmisartan by 9.08-fold and 3.11-fold, respectively. A SEM study revealed the formation of cocrystals of telmisartan when treated with maleic acid. DSC and XRD studies also confirmed the conversion of crystalline telmisartan into its cocrystal state upon treating with maleic acid. Preclinical investigation revealed significant improvement in the efficacy of optimized cocrystals in terms of plasma drug concentration, indicating enhanced bioavailability through improved solubility as well as dissolution of telmisartan cocrystals. The present research concluded that molecular docking is an important path in selecting an appropriate stoichiometric ratio of telmisartan: maleic acid to form cocrystals and improve the solubility, dissolution, and bioavailability of poorly soluble telmisartan.

2.
J Org Chem ; 88(9): 5420-5430, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36913616

RESUMO

We disclose a metal-free, cascade regio- and stereoselective trifluormethyloximation, cyclization, and elimination strategy with readily available α,ß-unsaturated carbonyl compounds to access a wide variety of pharmaceutically potential heteroaromatics, i.e., 4-(trifluoromethyl)isoxazoles including a trifluoromethyl analogue of an anticancer agent. The transformation requires only a couple of commercially available and cheap reagents i.e., CF3SO2Na as the trifluoromethyl source, and tBuONO as an oxidant as well as a source of N and O. Notably, 5-alkenyl-4-(trifluoromethyl)isoxazoles were further synthetically diversified to a new class of biheteroaryls, i.e., 5-(3-pyrrolyl)-4-(trifluoromethyl)isoxazoles. Mechanistic studies revealed a radical pathway for the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...