Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(11): e10718, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020690

RESUMO

Species interactions can influence species distributions, but mechanisms mitigating competition or facilitating positive interactions between ecologically similar species are often poorly understood. Aardwolves (Proteles cristata) and aardvarks (Orycteropus afer) are nocturnal, insectivorous mammals that co-occur in eastern and southern Africa, and knowledge of these species is largely limited to their nutritional biology. We used aardwolf and aardvark detections from 105 remote cameras during 2016-2018 to assess their spatial and temporal niche overlap in the grasslands of Serengeti National Park, Tanzania. Using a multispecies occupancy model, we identified a positive interaction between occupancy probabilities for aardwolves and aardvarks. Slope, proportion of grassland and termite mound density did not affect the occupancy probabilities of either species. The probability of aardwolf, but not aardvark, occupancy increased with distance to permanent water sources, which may relate to predation risk avoidance. Diel activity overlap between aardwolves and aardvarks was high during wet and dry seasons, with both species being largely nocturnal. Aardwolves and aardvarks have an important ecological role as termite consumers, and aardvarks are suggested to be ecosystem engineers. Our results contribute to a better understanding of the spatial and temporal niche of insectivores like aardwolves and aardvarks, suggesting high spatial and temporal niche overlap in which commensalism occurs, whereby aardwolves benefit from aardvark presence through increased food accessibility.

2.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046402

RESUMO

Southeastern Canada is inhabited by an amalgam of hybridizing wolf-like canids, raising fundamental questions regarding their taxonomy, origins, and timing of hybridization events. Eastern wolves (Canis lycaon), specifically, have been the subject of significant controversy, being viewed as either a distinct taxonomic entity of conservation concern or a recent hybrid of coyotes (C. latrans) and grey wolves (C. lupus). Mitochondrial DNA analyses show some evidence of eastern wolves being North American evolved canids. In contrast, nuclear genome studies indicate eastern wolves are best described as a hybrid entity, but with unclear timing of hybridization events. To test hypotheses related to these competing findings we sequenced whole genomes of 25 individuals, representative of extant Canadian wolf-like canid types of known origin and levels of contemporary hybridization. Here we present data describing eastern wolves as a distinct taxonomic entity that evolved separately from grey wolves for the past ∼67,000 years with an admixture event with coyotes ∼37,000 years ago. We show that Great Lakes wolves originated as a product of admixture between grey wolves and eastern wolves after the last glaciation (∼8,000 years ago) while eastern coyotes originated as a product of admixture between "western" coyotes and eastern wolves during the last century. Eastern wolf nuclear genomes appear shaped by historical and contemporary gene flow with grey wolves and coyotes, yet evolutionary uniqueness remains among eastern wolves currently inhabiting a restricted range in southeastern Canada.


Assuntos
Canidae , Coiotes , Lobos , Animais , Lobos/genética , Coiotes/genética , Canadá , Canidae/genética , Genoma , Hibridização Genética
3.
Ecol Appl ; 32(6): e2629, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35403759

RESUMO

The relative effect of top-down versus bottom-up forces in regulating and limiting wildlife populations is an important theme in ecology. Untangling these effects is critical for a basic understanding of trophic dynamics and effective management. We examined the drivers of moose (Alces alces) population growth by integrating two independent sources of observations within a hierarchical Bayesian population model. We used one of the largest existing spatiotemporal data sets on ungulate population dynamics globally. We documented a 20% population decline over the period examined. There was negative density-dependent population growth of moose. Although we could not determine the mechanisms producing density-dependent suppression of population growth, the relatively low densities at which we documented moose populations suggested it could be due to density-dependent predation. Predation primarily limited population growth, except at low density, where it was regulating. After we simulated several harvest scenarios, it appeared that harvest was largely additive and likely contributed to population declines. Our results highlight how population dynamics are context dependent and vary strongly across gradients in climate, forest type, and predator abundance. These results help clarify long-standing questions in population ecology and highlight the complex relationships between natural and human-caused mortality in driving ungulate population dynamics.


Assuntos
Cervos , Lobos , Animais , Teorema de Bayes , Cervos/fisiologia , Dinâmica Populacional , Comportamento Predatório , Lobos/fisiologia
4.
FEMS Microbiol Ecol ; 97(5)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33729507

RESUMO

The gut microbiome of animals vary by age, diet, and habitat, and directly influences an individual's health. Similarly, variation in home ranges is linked to feeding strategies and fitness. Ungulates (hooved mammals) exhibit species-specific microbiomes and habitat use patterns. We combined gut microbiome and movement data to assess relationships between space use and the gut microbiome in a specialist and a generalist ungulate. We GPS radiocollared 24 mountain goats (Oreamnos americanus) and 34 white-tailed deer (Odocoileus virginianus), collected fecal samples, and conducted high-throughput sequencing of the 16S rRNA gene. We generated gut diversity metrics and key bacterial ratios. Our research question centred around the idea that larger Firmicutes to Bacteroidetes ratios confer body size or fat advantages that allow for larger home ranges, and relationships of disproportionate habitat use are stronger in the habitat specialist mountain goat. Firmicutes to Bacteroidetes ratios were positively correlated with core range area in both species. Mountain goats exhibited a negative relationship between gut diversity and proportional use of treed areas and escape terrain, and no relationships were detected in the habitat generalist white-tailed deer. This is the first study to relate range size to the gut microbiome in wild ungulates and is an important proof of concept that advances the information that can be gleaned from non-invasive sampling.


Assuntos
Cervos , Microbioma Gastrointestinal , Animais , Fezes , Firmicutes , RNA Ribossômico 16S/genética
5.
Ecol Evol ; 9(18): 10801-10815, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31624583

RESUMO

AIM: The influence of humans on large carnivores, including wolves, is a worldwide conservation concern. In addition, human-caused changes in carnivore density and distribution might have impacts on prey and, indirectly, on vegetation. We therefore tested wolf responses to infrastructure related to natural resource development (i.e., human footprint). LOCATION: Our study provides one of the most extensive assessments of how predators like wolves select habitat in response to various degrees of footprint across boreal ecosystems encompassing over a million square kilometers of Canada. METHODS: We deployed GPS-collars on 172 wolves, monitored movements and used a generalized functional response (GFR) model of resource selection. A functional response in habitat selection occurs when selection varies as a function of the availability of that habitat. GFRs can clarify how human-induced habitat changes are influencing wildlife across large, diverse landscapes. RESULTS: Wolves displayed a functional response to footprint. Wolves were more likely to select forest harvest cutblocks in regions with higher cutblock density (i.e., a positive functional response to high-quality habitats for ungulate prey) and to select for higher road density in regions where road density was high (i.e., a positive functional response to human-created travel routes). Wolves were more likely to use cutblocks in habitats with low road densities, and more likely to use roads in habitats with low cutblock densities, except in winter when wolves were more likely to use roads regardless of cutblock density. MAIN CONCLUSIONS: These interactions suggest that wolves trade-off among human-impacted habitats, and adaptively switch from using roads to facilitate movement (while also risking encounters with humans), to using cutblocks that may have higher ungulate densities. We recommend that conservation managers consider the contextual and interacting effects of footprints when assessing impacts on carnivores. These effects likely have indirect impacts on ecosystems too, including on prey species.

6.
Genes (Basel) ; 9(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518163

RESUMO

The threatened eastern wolf is found predominantly in protected areas of central Ontario and has an evolutionary history obscured by interbreeding with coyotes and gray wolves, which challenges its conservation status and subsequent management. Here, we used a population genomics approach to uncover spatial patterns of variation in 281 canids in central Ontario and the Great Lakes region. This represents the first genome-wide single nucleotide polymorphism (SNP) dataset with substantial sample sizes of representative populations. Although they comprise their own genetic cluster, we found evidence of eastern wolf dispersal outside of the boundaries of protected areas, in that the frequency of eastern wolf genetic variation decreases with increasing distance from provincial parks. We detected eastern wolf alleles in admixed coyotes along the northeastern regions of Lake Huron and Lake Ontario. Our analyses confirm the unique genomic composition of eastern wolves, which are mostly restricted to small fragmented patches of protected habitat in central Ontario. We hope this work will encourage an innovative discussion regarding a plan for managed introgression, which could conserve eastern wolf genetic material in any genome regardless of their potential mosaic ancestry composition and the habitats that promote them.

7.
Ecol Evol ; 8(11): 5863-5872, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938099

RESUMO

The ideal free distribution assumes that animals select habitats that are beneficial to their fitness. When the needs of dependent offspring differ from those of the parent, ideal habitat selection patterns could vary with the presence or absence of offspring. We test whether habitat selection depends on reproductive state due to top-down or bottom-up influences on the fitness of woodland caribou (Rangifer tarandus caribou), a threatened, wide-ranging herbivore. We combined established methods of fitting resource and step selection functions derived from locations of collared animals in Ontario with newer techniques, including identifying calf status from video collar footage and seasonal habitat selection analysis through latent selection difference functions. We found that females with calves avoided predation risk and proximity to roads more strongly than females without calves within their seasonal ranges. At the local scale, females with calves avoided predation more strongly than females without calves. Females with calves increased predation avoidance but not selection for food availability upon calving, whereas females without calves increased selection for food availability across the same season. These behavioral responses suggest that habitat selection by woodland caribou is influenced by reproductive state, such that females with calves at heel use habitat selection to offset the increased vulnerability of their offspring to predation risk.

8.
Ecol Evol ; 8(24): 12641-12655, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30619570

RESUMO

Range expansion is a widespread biological process, with well-described theoretical expectations associated with the colonization of novel ranges. However, comparatively few empirical studies address the genomic outcomes accompanying the genome-wide consequences associated with the range expansion process, particularly in recent or ongoing expansions. Here, we assess two recent and distinct eastward expansion fronts of a highly mobile carnivore, the coyote (Canis latrans), to investigate patterns of genomic diversity and identify variants that may have been under selection during range expansion. Using a restriction-associated DNA sequencing (RADseq), we genotyped 394 coyotes at 22,935 SNPs and found that overall population structure corresponded to their 19th century historical range and two distinct populations that expanded during the 20th century. Counter to theoretical expectations for populations to bottleneck during range expansions, we observed minimal evidence for decreased genomic diversity across coyotes sampled along either expansion front, which is likely due to hybridization with other Canis species. Furthermore, we identified 12 SNPs, located either within genes or putative regulatory regions, that were consistently associated with range expansion. Of these 12 genes, three (CACNA1C, ALK, and EPHA6) have putative functions related to dispersal, including habituation to novel environments and spatial learning, consistent with the expectations for traits under selection during range expansion. Although coyote colonization of eastern North America is well-publicized, this study provides novel insights by identifying genes associated with dispersal capabilities in coyotes on the two eastern expansion fronts.

10.
PLoS One ; 12(11): e0186525, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117234

RESUMO

Woodland caribou (Rangifer tarandus caribou) in Ontario are a threatened species that have experienced a substantial retraction of their historic range. Part of their decline has been attributed to increasing densities of anthropogenic linear features such as trails, roads, railways, and hydro lines. These features have been shown to increase the search efficiency and kill rate of wolves. However, it is unclear whether selection for anthropogenic linear features is additive or compensatory to selection for natural (water) linear features which may also be used for travel. We studied the selection of water and anthropogenic linear features by 52 resident wolves (Canis lupus x lycaon) over four years across three study areas in northern Ontario that varied in degrees of forestry activity and human disturbance. We used Euclidean distance-based resource selection functions (mixed-effects logistic regression) at the seasonal range scale with random coefficients for distance to water linear features, primary/secondary roads/railways, and hydro lines, and tertiary roads to estimate the strength of selection for each linear feature and for several habitat types, while accounting for availability of each feature. Next, we investigated the trade-off between selection for anthropogenic and water linear features. Wolves selected both anthropogenic and water linear features; selection for anthropogenic features was stronger than for water during the rendezvous season. Selection for anthropogenic linear features increased with increasing density of these features on the landscape, while selection for natural linear features declined, indicating compensatory selection of anthropogenic linear features. These results have implications for woodland caribou conservation. Prey encounter rates between wolves and caribou seem to be strongly influenced by increasing linear feature densities. This behavioral mechanism-a compensatory functional response to anthropogenic linear feature density resulting in decreased use of natural travel corridors-has negative consequences for the viability of woodland caribou.


Assuntos
Conservação dos Recursos Naturais , Comportamento Predatório/fisiologia , Rena/fisiologia , Lobos/fisiologia , Animais , Ecossistema , Cadeia Alimentar , Agricultura Florestal , Humanos , Ontário , Água
12.
Ecol Appl ; 27(3): 718-733, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28064464

RESUMO

Understanding the ecological roles of species that influence ecosystem processes is a central goal of ecology and conservation biology. Eastern coyotes (Canis latrans) have ascended to the role of apex predator across much of eastern North America since the extirpation of wolves (Canis spp.) and there has been considerable confusion regarding their ability to prey on ungulates and their ecological niche relative to wolves. Eastern wolves (C. lycaon) are thought to have been the historical top predator in eastern deciduous forests and have previously been characterized as deer specialists that are inefficient predators of moose because of their smaller size relative to gray wolves (C. lupus). We investigated intrinsic and extrinsic influences on per capita kill rates of white-tailed deer (Odocoileus virginianus) and moose (Alces alces) during winter by sympatric packs of eastern coyotes, eastern wolves, and admixed canids in Ontario, Canada to clarify the predatory ability and ecological roles of the different canid top predators of eastern North America. Eastern coyote ancestry within packs negatively influenced per capita total ungulate (deer and moose combined) and moose kill rates. Furthermore, canids in packs dominated by eastern coyote ancestry consumed significantly less ungulate biomass and more anthropogenic food than packs dominated by wolf ancestry. Similar to gray wolves in previous studies, eastern wolves preyed on deer where they were available. However, in areas were deer were scarce, eastern wolves killed moose at rates similar to those previously documented for gray wolves at comparable moose densities across North America. Eastern coyotes are effective deer predators, but their dietary flexibility and low kill rates on moose suggest they have not replaced the ecological role of wolves in eastern North America.


Assuntos
Coiotes/fisiologia , Cervos , Cadeia Alimentar , Comportamento Predatório , Lobos/fisiologia , Animais , Ontário , Lobos/classificação
13.
PLoS One ; 11(4): e0150730, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27082234

RESUMO

Birth synchrony is well documented among ungulates and is hypothesised to maximize neonate survival, either by minimizing the risk of predation through predator swamping or by synchronising birthing with increased seasonal food availability. We used encapsulated vaginal implant transmitters to locate and capture neonatal moose calves and document the seasonal and diel timing of parturition in two adjacent study areas with different predation pressure in central Ontario, Canada. We tested the hypothesis that predation promotes earlier and more synchronous birth of moose calves. Across both areas, proportionately more births occurred during the afternoon and fewer than expected occurred overnight. Mean date of calving averaged 1.5 days earlier and calving was also more synchronous in the study area with heavier predation pressure, despite average green-up date and peak Normalized Difference Vegetation Index date occurring 2 days later in this study area than in the area receiving lighter predation pressure. We encourage analysis of data on timing of parturition from additional study areas experiencing varying degrees of predation pressure to better clarify the influence of predation in driving seasonal and diel timing of parturition in temperate ungulates.


Assuntos
Cruzamento , Cervos/fisiologia , Dieta , Ecossistema , Comportamento Predatório/fisiologia , Estações do Ano , Animais , Animais Recém-Nascidos , Cadeia Alimentar , Ontário , Dinâmica Populacional
14.
J Anim Ecol ; 84(5): 1177-86, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25757794

RESUMO

1. Although local variation in territorial predator density is often correlated with habitat quality, the causal mechanism underlying this frequently observed association is poorly understood and could stem from facultative adjustment in either group size or territory size. 2. To test between these alternative hypotheses, we used a novel statistical framework to construct a winter population-level utilization distribution for wolves (Canis lupus) in northern Ontario, which we then linked to a suite of environmental variables to determine factors influencing wolf space use. Next, we compared habitat quality metrics emerging from this analysis as well as an independent measure of prey abundance, with pack size and territory size to investigate which hypothesis was most supported by the data. 3. We show that wolf space use patterns were concentrated near deciduous, mixed deciduous/coniferous and disturbed forest stands favoured by moose (Alces alces), the predominant prey species in the diet of wolves in northern Ontario, and in proximity to linear corridors, including shorelines and road networks remaining from commercial forestry activities. 4. We then demonstrate that landscape metrics of wolf habitat quality - projected wolf use, probability of moose occupancy and proportion of preferred land cover classes - were inversely related to territory size but unrelated to pack size. 5. These results suggest that wolves in boreal ecosystems alter territory size, but not pack size, in response to local variation in habitat quality. This could be an adaptive strategy to balance trade-offs between territorial defence costs and energetic gains due to resource acquisition. That pack size was not responsive to habitat quality suggests that variation in group size is influenced by other factors such as intraspecific competition between wolf packs.


Assuntos
Ecossistema , Comportamento Social , Territorialidade , Lobos/fisiologia , Animais , Sistemas de Informação Geográfica , Ontário , Estações do Ano
15.
J Anim Ecol ; 84(4): 1059-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25714592

RESUMO

Movement patterns offer a rich source of information on animal behaviour and the ecological significance of landscape attributes. This is especially useful for species occupying remote landscapes where direct behavioural observations are limited. In this study, we fit a mechanistic model of animal cognition and movement to GPS positional data of woodland caribou (Rangifer tarandus caribou; Gmelin 1788) collected over a wide range of ecological conditions. The model explicitly tracks individual animal informational state over space and time, with resulting parameter estimates that have direct cognitive and ecological meaning. Three biotic landscape attributes were hypothesized to motivate caribou movement: forage abundance (dietary digestible biomass), wolf (Canis lupus; Linnaeus, 1758) density and moose (Alces alces; Linnaeus, 1758) habitat. Wolves are the main predator of caribou in this system and moose are their primary prey. Resulting parameter estimates clearly indicated that forage abundance is an important driver of caribou movement patterns, with predator and moose avoidance often having a strong effect, but not for all individuals. From the cognitive perspective, our results support the notion that caribou rely on limited sensory inputs from their surroundings, as well as on long-term spatial memory, to make informed movement decisions. Our study demonstrates how sensory, memory and motion capacities may interact with ecological fitness covariates to influence movement decisions by free-ranging animals.


Assuntos
Comportamento Animal , Cognição , Rena/fisiologia , Rena/psicologia , Lobos/fisiologia , Animais , Ecossistema , Cadeia Alimentar , Sistemas de Informação Geográfica , Modelos Biológicos , Ontário , Comportamento Predatório , Comportamento Espacial
16.
Ecology ; 95(2): 254-64, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24669720

RESUMO

It is widely recognized that protected areas can strongly influence ecological systems and that hybridization is an important conservation issue. However, previous studies have not explicitly considered the influence of protected areas on hybridization dynamics. Eastern wolves are a species of special concern and their distribution is largely restricted to a protected population in Algonquin Provincial Park (APP), Ontario, Canada, where they are the numerically dominant canid. We studied intrinsic and extrinsic factors influencing survival and cause-specific mortality of hybrid and parental canids in the three-species hybrid zone between eastern wolves, eastern coyotes, and gray wolves in and adjacent to APP. Mortality risk for eastern wolves in areas adjacent to APP was significantly higher than for other sympatric Canis types outside of APP, and for eastern wolves and other canids within APP. Outside of APP, the annual mortality rate of all canids by harvest (24%) was higher than for other causes of death (4-7%). Furthermore, eastern wolves (hazard ratio = 3.5) and nonresidents (transients and dispersing animals, hazard ratio = 2.7) were more likely to die from harvest relative to other Canis types and residents, respectively. Thus, eastern wolves dispersing from APP were especially vulnerable to harvest mortality. For residents, eastern wolf survival was more negatively influenced by increased road density than for other Canis types, further highlighting the sensitivity of eastern wolves to human disturbance. A cycle of dispersal from APP followed by high rates of mortality and hybridization appears to maintain eastern wolves at low density adjacent to APP, limiting the potential for expansion beyond the protected area. However, high survival and numerical dominance of eastern wolves within APP suggest that protected areas can allow rare hybridizing species to persist even if their demographic performance is compromised and barriers to hybridization are largely absent in the adjacent matrix.


Assuntos
Coiotes/genética , Genótipo , Hibridização Genética , Lobos/genética , Animais , Animais Selvagens , Feminino , Masculino , Ontário
17.
Ecol Evol ; 3(9): 3005-20, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24101990

RESUMO

Hybridization has played an important role in the evolutionary history of Canis species in eastern North America. Genetic evidence of coyote-dog hybridization based on mitochondrial DNA (mtDNA) is lacking compared to that based on autosomal markers. This discordance suggests dog introgression into coyotes has potentially been male biased, but this hypothesis has not been formally tested. Therefore, we investigated biparentally, maternally, and paternally inherited genetic markers in a sample of coyotes and dogs from southeastern Ontario to assess potential asymmetric dog introgression into coyotes. Analysis of autosomal microsatellite genotypes revealed minimal historical and contemporary admixture between coyotes and dogs. We observed only mutually exclusive mtDNA haplotypes in coyotes and dogs, but we observed Y-chromosome haplotypes (Y-haplotypes) in both historical and contemporary coyotes that were also common in dogs. Species-specific Zfy intron sequences of Y-haplotypes shared between coyotes and dogs confirmed their homology and indicated a putative origin from dogs. We compared Y-haplotypes observed in coyotes, wolves, and dogs profiled in multiple studies, and observed that the Y-haplotypes shared between coyotes and dogs were either absent or rare in North American wolves, present in eastern coyotes, but absent in western coyotes. We suggest the eastern coyote has experienced asymmetric genetic introgression from dogs, resulting from predominantly historical hybridization with male dogs and subsequent backcrossing of hybrid offspring with coyotes. We discuss the temporal and spatial dynamics of coyote-dog hybridization and the conditions that may have facilitated the introgression of dog Y-chromosomes into coyotes. Our findings clarify the evolutionary history of the eastern coyote.

18.
Oecologia ; 173(4): 1539-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23864253

RESUMO

Gray wolves (Canis lupus) and coyotes (Canis latrans) generally exhibit intraspecific territoriality manifesting in spatial segregation between adjacent packs. However, previous studies have found a high degree of interspecific spatial overlap between sympatric wolves and coyotes. Eastern wolves (Canis lycaon) are the most common wolf in and around Algonquin Provincial Park (APP), Ontario, Canada and hybridize with sympatric gray wolves and coyotes. We hypothesized that all Canis types (wolves, coyotes, and hybrids) exhibit a high degree of spatial segregation due to greater genetic, morphologic, and ecological similarities between wolves and coyotes in this hybrid system compared with western North American ecosystems. We used global positioning system telemetry and probabilistic measures of spatial overlap to investigate spatial segregation between adjacent Canis packs. Our hypothesis was supported as: (1) the probability of locating wolves, coyotes, and hybrids within home ranges ([Formula: see text] = 0.05) or core areas ([Formula: see text] < 0.01) of adjacent packs was low; and (2) the amount of shared space use was negligible. Spatial segregation did not vary substantially in relation to genotypes of adjacent packs or local environmental conditions (i.e., harvest regulations or road densities). We provide the first telemetry-based demonstration of spatial segregation between wolves and coyotes, highlighting the novel relationships between Canis types in the Ontario hybrid zone relative to areas where wolves and coyotes are reproductively isolated. Territoriality among Canis may increase the likelihood of eastern wolves joining coyote and hybrid packs, facilitate hybridization, and could play a role in limiting expansion of the genetically distinct APP eastern wolf population.


Assuntos
Coiotes/genética , Hibridização Genética , Territorialidade , Lobos/genética , Animais , Ecossistema , Genética Populacional , Sistemas de Informação Geográfica , Ontário
19.
Mol Ecol ; 21(24): 5934-54, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23173981

RESUMO

Eastern wolves have hybridized extensively with coyotes and gray wolves and are listed as a 'species of special concern' in Canada. However, a distinct population of eastern wolves has been identified in Algonquin Provincial Park (APP) in Ontario. Previous studies of the diverse Canis hybrid zone adjacent to APP have not linked genetic analysis with field data to investigate genotype-specific morphology or determine how resident animals of different ancestry are distributed across the landscape in relation to heterogeneous environmental conditions. Accordingly, we studied resident wolves and coyotes in and adjacent to APP to identify distinct Canis types, clarify the extent of the APP eastern wolf population beyond the park boundaries and investigate fine-scale spatial genetic structure and landscape-genotype associations in the hybrid zone. We documented three genetically distinct Canis types within the APP region that also differed morphologically, corresponding to putative gray wolves, eastern wolves and coyotes. We also documented a substantial number of hybrid individuals (36%) that were admixed between 2 or 3 of the Canis types. Breeding eastern wolves were less common outside of APP, but occurred in some unprotected areas where they were sympatric with a diverse combination of coyotes, gray wolves and hybrids. We found significant spatial genetic structure and identified a steep cline extending west from APP where the dominant genotype shifted abruptly from eastern wolves to coyotes and hybrids. The genotypic pattern to the south and northwest was a more complex mosaic of alternating genotypes. We modelled genetic ancestry in response to prey availability and human disturbance and found that individuals with greater wolf ancestry occupied areas of higher moose density and fewer roads. Our results clarify the structure of the Canis hybrid zone adjacent to APP and provide unique insight into environmental conditions influencing hybridization dynamics between wolves and coyotes.


Assuntos
Coiotes/genética , Hibridização Genética , Lobos/genética , Animais , Teorema de Bayes , Quimera/anatomia & histologia , Quimera/classificação , Quimera/genética , Coiotes/anatomia & histologia , Coiotes/classificação , Meio Ambiente , Genética Populacional , Genótipo , Repetições de Microssatélites , Dados de Sequência Molecular , Ontário , Análise de Componente Principal , Análise de Sequência de DNA , Lobos/anatomia & histologia , Lobos/classificação
20.
Ecol Evol ; 2(9): 2128-40, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23139873

RESUMO

Contemporary evolution through human-induced hybridization occurs throughout the taxonomic range. Formerly allopatric species appear especially susceptible to hybridization. Consequently, hybridization is expected to be more common in regions with recent sympatry owing to human activity than in areas of historical range overlap. Coyotes (Canis latrans) and gray wolves (C. lupus) are historically sympatric in western North America. Following European settlement gray wolf range contracted, whereas coyote range expanded to include eastern North America. Furthermore, wolves with New World (NW) mitochondrial DNA (mtDNA) haplotypes now extend from Manitoba to Québec in Canada and hybridize with gray wolves and coyotes. Using mtDNA and 12 microsatellite markers, we evaluated levels of wolf-coyote hybridization in regions where coyotes were present (the Canadian Prairies, n = 109 samples) and absent historically (Québec, n = 154). Wolves with NW mtDNA extended from central Saskatchewan (51°N, 69°W) to northeastern Québec (54°N, 108°W). On the Prairies, 6.3% of coyotes and 9.2% of wolves had genetic profiles suggesting wolf-coyote hybridization. In contrast, 12.6% of coyotes and 37.4% of wolves in Québec had profiles indicating hybrid origin. Wolves with NW and Old World (C. lupus) mtDNA appear to form integrated populations in both regions. Our results suggest that hybridization is more frequent in historically allopatric populations. Range shifts, now expected across taxa following climate change and other human influence on the environment, might therefore promote contemporary evolution by hybridization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...