Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 22: 121-131, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718218

RESUMO

OBJECTIVES: Leptin acts via its receptor LepRb on specialized neurons in the brain to modulate food intake, energy expenditure, and body weight. LepRb activates signal transducers and activators of transcription (STATs, including STAT1, STAT3, and STAT5) to control gene expression. METHODS: Because STAT3 is crucial for physiologic leptin action, we used TRAP-seq to examine gene expression in LepRb neurons of mice ablated for Stat3 in LepRb neurons (Stat3LepRbKO mice), revealing the STAT3-dependent transcriptional targets of leptin. To understand roles for STAT proteins in leptin action, we also ablated STAT1 or STAT5 from LepRb neurons and expressed a constitutively-active STAT3 (CASTAT3) in LepRb neurons. RESULTS: While we also found increased Stat1 expression and STAT1-mediated transcription of leptin-regulated genes in Stat3LepRbKO mice, ablating Stat1 in LepRb neurons failed to alter energy balance (even on the Stat3LepRbKO background); ablating Stat5 in LepRb neurons also failed to alter energy balance. Importantly, expression of a constitutively-active STAT3 (CASTAT3) in LepRb neurons decreased food intake and body weight and improved metabolic parameters in leptin-deficient (ob/ob) mice, as well as in wild-type animals. CONCLUSIONS: Thus, STAT3 represents the unique STAT protein required for leptin action and STAT3 suffices to mediate important components of leptin action in the absence of other LepRb signals.


Assuntos
Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Leptina/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética
2.
Endocrinology ; 160(2): 343-358, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541071

RESUMO

The central melanocortin system plays a crucial role in the control of energy balance. Although the decreased energy expenditure and increased adiposity of melanocortin-3 receptor (Mc3R)-null mice suggest the importance of Mc3R-regulated neurons in energy homeostasis, the roles for specific subsets of Mc3R neurons in energy balance have yet to be determined. Because the lateral hypothalamic area (LHA) contributes to the control of energy expenditure and feeding, we generated Mc3rcre mice to determine the roles of LHA Mc3R (Mc3RLHA) neurons in energy homeostasis. We found that Mc3RLHA neurons overlap extensively with LHA neuron markers that contribute to the control of energy balance (neurotensin, galanin, and leptin receptor) and project to brain areas involved in the control of feeding, locomotion, and energy expenditure, consistent with potential roles for Mc3RLHA neurons in these processes. Indeed, selective chemogenetic activation of Mc3RLHA neurons increased locomotor activity and augmented refeeding after a fast. Although the ablation of Mc3RLHA neurons did not alter food intake, mice lacking Mc3RLHA neurons displayed decreased energy expenditure and locomotor activity, along with increased body mass and adiposity. Thus, Mc3R neurons lie within LHA neurocircuitry that modulates locomotor activity and energy expenditure and contribute to energy balance control.


Assuntos
Metabolismo Energético , Região Hipotalâmica Lateral/fisiologia , Receptor Tipo 3 de Melanocortina/metabolismo , Adiposidade , Animais , Comportamento Alimentar , Região Hipotalâmica Lateral/citologia , Locomoção , Camundongos , Camundongos Transgênicos
3.
Mol Metab ; 14: 130-138, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29914853

RESUMO

OBJECTIVE: To date, early developmental ablation of leptin receptor (LepRb) expression from circumscribed populations of hypothalamic neurons (e.g., arcuate nucleus (ARC) Pomc- or Agrp-expressing cells) has only minimally affected energy balance. In contrast, removal of LepRb from at least two large populations (expressing vGat or Nos1) spanning multiple hypothalamic regions produced profound obesity and metabolic dysfunction. Thus, we tested the notion that the total number of leptin-responsive hypothalamic neurons (rather than specific subsets of cells with a particular molecular or anatomical signature) subjected to early LepRb deletion might determine energy balance. METHODS: We generated new mouse lines deleted for LepRb in ARC GhrhCre neurons or in Htr2cCre neurons (representing roughly half of all hypothalamic LepRb neurons, distributed across many nuclei). We compared the phenotypes of these mice to previously-reported models lacking LepRb in Pomc, Agrp, vGat or Nos1 cells. RESULTS: The early developmental deletion of LepRb from vGat or Nos1 neurons produced dramatic obesity, but deletion of LepRb from Pomc, Agrp, Ghrh, or Htr2c neurons minimally altered energy balance. CONCLUSIONS: Although early developmental deletion of LepRb from known populations of ARC neurons fails to substantially alter body weight, the minimal phenotype of mice lacking LepRb in Htr2c cells suggests that the phenotype that results from early developmental LepRb deficiency depends not simply upon the total number of leptin-responsive hypothalamic LepRb cells. Rather, specific populations of LepRb neurons must play particularly important roles in body energy homeostasis; these as yet unidentified LepRb cells likely reside in the DMH.


Assuntos
Metabolismo Energético , Hipotálamo/citologia , Neurônios/metabolismo , Obesidade/metabolismo , Receptores para Leptina/genética , Animais , Feminino , Deleção de Genes , Hipotálamo/embriologia , Hipotálamo/metabolismo , Masculino , Camundongos , Neurônios/classificação , Neurônios/citologia , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Receptores para Leptina/metabolismo
4.
Endocrinology ; 159(4): 1860-1872, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29522093

RESUMO

The adipocyte-derived hormone leptin acts via its receptor (LepRb) on central nervous system neurons to communicate the repletion of long-term energy stores, to decrease food intake, and to promote energy expenditure. We generated mice that express Cre recombinase from the calcitonin receptor (Calcr) locus (Calcrcre mice) to study Calcr-expressing LepRb (LepRbCalcr) neurons, which reside predominantly in the arcuate nucleus (ARC). Calcrcre-mediated ablation of LepRb in LepRbCalcrknockout (KO) mice caused hyperphagic obesity. Because LepRb-mediated transcriptional control plays a crucial role in leptin action, we used translating ribosome affinity purification followed by RNA sequencing to define the transcriptome of hypothalamic Calcr neurons, along with its alteration in LepRbCalcrKO mice. We found that ARC LepRbCalcr cells include neuropeptide Y (NPY)/agouti-related peptide (AgRP)/γ-aminobutyric acid (GABA) ("NAG") cells as well as non-NAG cells that are distinct from pro-opiomelanocortin cells. Furthermore, although LepRbCalcrKO mice exhibited dysregulated expression of several genes involved in energy balance, neither the expression of Agrp and Npy nor the activity of NAG cells was altered in vivo. Thus, although direct leptin action via LepRbCalcr cells plays an important role in leptin action, our data also suggest that leptin indirectly, as well as directly, regulates these cells.


Assuntos
Ingestão de Alimentos/fisiologia , Hipotálamo/metabolismo , Leptina/análogos & derivados , Neurônios/fisiologia , Receptores da Calcitonina/metabolismo , Receptores para Leptina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Leptina/farmacologia , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores para Leptina/genética
5.
Diabetes ; 67(6): 1093-1104, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29535089

RESUMO

Leptin acts via its receptor (LepRb) to modulate gene expression in hypothalamic LepRb-expressing neurons, thereby controlling energy balance and glucose homeostasis. Despite the importance of the control of gene expression in hypothalamic LepRb neurons for leptin action, the transcriptional targets of LepRb signaling have remained undefined because LepRb cells contribute a small fraction to the aggregate transcriptome of the brain regions in which they reside. We thus employed translating ribosome affinity purification followed by RNA sequencing to isolate and analyze mRNA from the hypothalamic LepRb neurons of wild-type or leptin-deficient (Lepob/ob) mice treated with vehicle or exogenous leptin. Although the expression of most of the genes encoding the neuropeptides commonly considered to represent the main targets of leptin action were altered only following chronic leptin deprivation, our analysis revealed other transcripts that were coordinately regulated by leptin under multiple treatment conditions. Among these, acute leptin treatment increased expression of the transcription factor Atf3 in LepRb neurons. Furthermore, ablation of Atf3 from LepRb neurons (Atf3LepRbKO mice) decreased leptin efficacy and promoted positive energy balance in mice. Thus, this analysis revealed the gene targets of leptin action, including Atf3, which represents a cellular mediator of leptin action.


Assuntos
Fator 3 Ativador da Transcrição/agonistas , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Receptores para Leptina/agonistas , Transdução de Sinais , Fator 3 Ativador da Transcrição/química , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Cruzamentos Genéticos , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/patologia , Leptina/análogos & derivados , Leptina/farmacologia , Leptina/uso terapêutico , Lipotrópicos/farmacologia , Lipotrópicos/uso terapêutico , Masculino , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos
6.
J Clin Invest ; 127(8): 3103-3113, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28714862

RESUMO

Adipocytes secrete the hormone leptin to signal the sufficiency of energy stores. Reductions in circulating leptin concentrations reflect a negative energy balance, which augments sympathetic nervous system (SNS) activation in response to metabolically demanding emergencies. This process ensures adequate glucose mobilization despite low energy stores. We report that leptin receptor-expressing neurons (LepRb neurons) in the periaqueductal gray (PAG), the largest population of LepRb neurons in the brain stem, mediate this process. Application of noxious stimuli, which often signal the need to mobilize glucose to support an appropriate response, activated PAG LepRb neurons, which project to and activate parabrachial nucleus (PBN) neurons that control SNS activation and glucose mobilization. Furthermore, activating PAG LepRb neurons increased SNS activity and blood glucose concentrations, while ablating LepRb in PAG neurons augmented glucose mobilization in response to noxious stimuli. Thus, decreased leptin action on PAG LepRb neurons augments the autonomic response to noxious stimuli, ensuring sufficient glucose mobilization during periods of acute demand in the face of diminished energy stores.


Assuntos
Glucose/metabolismo , Leptina/fisiologia , Neurônios/fisiologia , Sistema Nervoso Simpático , Adipócitos/fisiologia , Animais , Comportamento Animal , Glicemia/metabolismo , Encéfalo/fisiologia , Feminino , Teste de Tolerância a Glucose , Hiperglicemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dor , Fenótipo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores para Leptina/fisiologia
7.
Diabetes ; 65(9): 2711-23, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27207534

RESUMO

The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia.


Assuntos
Encéfalo/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Mapeamento Encefálico , Feminino , Glucoquinase/metabolismo , Região Hipotalâmica Lateral/metabolismo , Imuno-Histoquímica , Ilhotas Pancreáticas/inervação , Masculino , Camundongos Endogâmicos C57BL , Núcleo Hipotalâmico Ventromedial/metabolismo
8.
Endocrinology ; 157(4): 1555-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26862996

RESUMO

A variety of data suggest that estrogen action on kisspeptin (Kiss1)-containing arcuate nucleus neurons (which coexpress Kiss1, neurokinin B (the product of Tac2) and dynorphin (KNDy) neurons restrains reproductive onset and function, but roles for estrogen action in these Kiss1 neurons relative to a distinct population of rostral hypothalamic Kiss1 neurons (which does not express Tac2 or dynorphin) have not been directly tested. To test the role for estrogen receptor (ER)α in KNDy cells, we thus generated Tac2(Cre) and Kiss1(Cre) knock-in mice and bred them onto the Esr1(flox) background to ablate ERα specifically in Tac2-expressing cells (ERα(Tac2)KO mice) or all Kiss1 cells (ERα(Kiss1)KO mice), respectively. Most ERα-expressing Tac2 neurons represent KNDy cells. Arcuate nucleus Kiss1 expression was elevated in ERα(Tac2)KO and ERα(Kiss1)KO females independent of gonadal hormones, whereas rostral hypothalamic Kiss1 expression was normal in ERα(Tac2)KO but decreased in ERα(Kiss1)KO females; this suggests that ERα in rostral Kiss1 cells is crucial for control of Kiss1 expression in these cells. Both ERα(Kiss1)KO and ERα(Tac2)KO females displayed early vaginal opening, early and persistent vaginal cornification, increased gonadotropins, uterine hypertrophy, and other evidence of estrogen excess. Thus, deletion of ERα in Tac2 neurons suffices to drive precocious gonadal hyperstimulation, demonstrating that ERα in Tac2 neurons typically restrains pubertal onset and hypothalamic reproductive drive.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Maturidade Sexual/fisiologia , Taquicininas/metabolismo , Animais , Composição Corporal/genética , Composição Corporal/fisiologia , Dinorfinas/genética , Dinorfinas/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Gonadotropinas/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Ovariectomia , Ovário/metabolismo , Precursores de Proteínas/genética , Reprodução/genética , Reprodução/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Maturidade Sexual/genética , Taquicininas/genética , Fatores de Tempo , Útero/metabolismo
9.
Mol Metab ; 4(4): 299-309, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25830093

RESUMO

OBJECTIVE: Leptin acts via its receptor (LepRb) on multiple subpopulations of LepRb neurons in the brain, each of which controls specific aspects of energy balance. Despite the importance of LepRb-containing neurons, the transcriptome and molecular identity of many LepRb subpopulations remain undefined due to the difficulty of studying the small fraction of total cells represented by LepRb neurons in heterogeneous brain regions. Here we sought to examine the transcriptome of LepRb neurons directly and identify markers for functionally relevant LepRb subsets. METHODS: We isolated mRNA from mouse hypothalamic and brainstem LepRb cells by Translating Ribosome Affinity Purification (TRAP) and analyzed it by RNA-seq (TRAP-seq). RESULTS: TRAP mRNA from LepRb cells was enriched for markers of peptidergic neurons, while TRAP-depleted mRNA from non-LepRb cells was enriched for markers of glial and immune cells. Genes encoding secreted proteins that were enriched in hypothalamic and brainstem TRAP mRNA revealed subpopulations of LepRb neurons that contained neuropeptide-encoding genes (including prodynorphin, Pdyn) not previously used as functional markers for LepRb neurons. Furthermore, Pdyn (cre) -mediated ablation of Lepr (flox) in Pdyn-expressing neurons (LepRb (Pdyn) KO mice) blunted energy expenditure to promote obesity during high-fat feeding. CONCLUSIONS: TRAP-seq of CNS LepRb neurons defines the LepRb neuron transcriptome and reveals novel markers for previously unrecognized subpopulations of LepRb neurons.

10.
Endocrinology ; 156(5): 1692-700, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25734363

RESUMO

Projections from the lateral hypothalamic area (LHA) innervate components of the mesolimbic dopamine (MLDA) system, including the ventral tegmental area (VTA) and nucleus accumbens (NAc), to modulate motivation appropriately for physiologic state. Neurotensin (NT)-containing LHA neurons respond to multiple homeostatic challenges and project to the VTA, suggesting that these neurons could link such signals to MLDA function. Indeed, we found that pharmacogenetic activation of LHA NT neurons promoted prolonged DA-dependent locomotor activity and NAc DA efflux, suggesting the importance of VTA neurotransmitter release by LHA NT neurons for the control of MLDA function. Using a microdialysis-mass spectrometry technique that we developed to detect endogenous NT in extracellular fluid in the mouse brain, we found that activation of LHA NT cells acutely increased the extracellular concentration of NT (a known activator of VTA DA cells) in the VTA. In contrast to the prolonged elevation of extracellular NAc DA, however, VTA NT concentrations rapidly returned to baseline. Intra-VTA infusion of NT receptor antagonist abrogated the ability of LHA NT cells to increase extracellular DA in the NAc, demonstrating that VTA NT promotes NAc DA release. Thus, transient LHA-derived NT release in the VTA couples LHA signaling to prolonged changes in DA efflux and MLDA function.


Assuntos
Dopamina/metabolismo , Região Hipotalâmica Lateral/metabolismo , Atividade Motora , Neostriado/metabolismo , Neurotensina/metabolismo , Núcleo Accumbens/metabolismo , Transdução de Sinais , Área Tegmentar Ventral/metabolismo , Animais , Masculino , Espectrometria de Massas , Camundongos , Microdiálise , Neurônios/metabolismo , Área Tegmentar Ventral/citologia
11.
Chem Senses ; 40(4): 223-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740302

RESUMO

There is uncertainty about the relationship between plasma leptin and sweet taste in mice. Whereas 2 studies have reported that elevations in plasma leptin diminish responsiveness to sweeteners, another found that they enhanced responsiveness to sucrose. We evaluated the impact of plasma leptin on sweet taste in C57BL/6J (B6) and leptin-deficient ob/ob mice. Although mice expressed the long-form leptin receptor (LepRb) selectively in Type 2 taste cells, leptin failed to activate a critical leptin-signaling protein, STAT3, in taste cells. Similarly, we did not observe any impact of intraperitoneal (i.p.) leptin treatment on chorda tympani nerve responses to sweeteners in B6 or ob/ob mice. Finally, there was no effect of leptin treatment on initial licking responses to several sucrose concentrations in B6 mice. We confirmed that basal plasma leptin levels did not exceed 10ng/mL, regardless of time of day, physiological state, or body weight, suggesting that taste cell LepRb were not desensitized to leptin in our studies. Furthermore, i.p. leptin injections produced plasma leptin levels that exceeded those previously reported to exert taste effects. We conclude that any effect of plasma leptin on taste responsiveness to sweeteners is subtle and manifests itself only under specific experimental conditions.


Assuntos
Leptina/sangue , Edulcorantes/farmacologia , Paladar/efeitos dos fármacos , Paladar/fisiologia , Língua/metabolismo , Animais , Injeções Intraperitoneais , Leptina/administração & dosagem , Leptina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores para Leptina/metabolismo , Língua/citologia , Língua/efeitos dos fármacos
12.
Neuropsychopharmacology ; 40(9): 2113-23, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25761571

RESUMO

Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or 'wanting'). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened 'wanting' was not due to individual differences in the hedonic impact ('liking') of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal 'hot-spots' that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation.


Assuntos
Sinais (Psicologia) , Individualidade , Motivação/fisiologia , Obesidade/patologia , Anfetamina/farmacologia , Animais , Condicionamento Clássico , Dieta/efeitos adversos , Suscetibilidade a Doenças , Jejum , Insulina/sangue , Leptina/sangue , Masculino , Obesidade/sangue , Obesidade/etiologia , Ratos , Ratos Sprague-Dawley , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Reforço Psicológico , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
13.
Cell Metab ; 20(6): 1030-7, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25470549

RESUMO

Hypoglycemia engenders an autonomically mediated counterregulatory (CR)-response that stimulates endogenous glucose production to maintain concentrations within an appropriate physiological range. Although the involvement of the brain in preserving normoglycemia has been established, the neurocircuitry underlying centrally mediated CR-responses remains unclear. Here we demonstrate that lateral parabrachial nucleus cholecystokinin (CCK(LPBN)) neurons are a population of glucose-sensing cells (glucose inhibited) with counterregulatory capacity. Furthermore, we reveal that steroidogenic-factor 1 (SF1)-expressing neurons of the ventromedial nucleus of the hypothalamus (SF1(VMH)) are the specific target of CCK(LPBN) glucoregulatory neurons. This discrete CCK(LPBN)→SF1(VMH) neurocircuit is both necessary and sufficient for the induction of CR-responses. Together, these data identify CCK(LPBN) neurons, and specifically CCK neuropeptide, as glucoregulatory and provide significant insight into the homeostatic mechanisms controlling CR-responses to hypoglycemia.


Assuntos
Colecistocinina/metabolismo , Hipoglicemia/metabolismo , Hipotálamo/metabolismo , Animais , Glicemia/metabolismo , Masculino , Camundongos , Núcleos Parabraquiais/citologia
14.
Nat Neurosci ; 17(12): 1744-1750, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25383904

RESUMO

Hypoglycemia initiates the counter-regulatory response (CRR), in which the sympathetic nervous system, glucagon and glucocorticoids restore glucose to appropriate concentrations. During starvation, low leptin levels restrain energy utilization, enhancing long-term survival. To ensure short-term survival during hypoglycemia in fasted animals, the CRR must overcome this energy-sparing program and nutrient depletion. Here we identify in mice a previously unrecognized role for leptin and a population of leptin-regulated neurons that modulate the CRR to meet these challenges. Hypoglycemia activates neurons of the parabrachial nucleus (PBN) that coexpress leptin receptor (LepRb) and cholecystokinin (CCK) (PBN LepRb(CCK) neurons), which project to the ventromedial hypothalamic nucleus. Leptin inhibits these cells, and Cck(cre)-mediated ablation of LepRb enhances the CRR. Inhibition of PBN LepRb cells blunts the CRR, whereas their activation mimics the CRR in a CCK-dependent manner. PBN LepRb(CCK) neurons are a crucial component of the CRR system and may be a therapeutic target in hypoglycemia.


Assuntos
Glicemia/metabolismo , Metabolismo Energético/fisiologia , Hipoglicemia/metabolismo , Leptina/farmacologia , Neurônios/metabolismo , Núcleos Parabraquiais/metabolismo , Animais , Glicemia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Leptina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Núcleos Parabraquiais/efeitos dos fármacos , Receptores para Leptina/metabolismo
15.
J Neurosci ; 34(34): 11405-15, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25143620

RESUMO

The adipocyte-derived hormone leptin modulates neural systems appropriately for the status of body energy stores. Leptin inhibits lateral hypothalamic area (LHA) orexin (OX; also known as hypocretin)-producing neurons, which control feeding, activity, and energy expenditure, among other parameters. Our previous results suggest that GABAergic LHA leptin receptor (LepRb)-containing and neurotensin (Nts)-containing (LepRb(Nts)) neurons lie in close apposition with OX neurons and control Ox mRNA expression. Here, we show that, similar to leptin, activation of LHA Nts neurons by the excitatory hM3Dq DREADD (designer receptor exclusively activated by designer drugs) hyperpolarizes membrane potential and suppresses action potential firing in OX neurons in mouse hypothalamic slices. Furthermore, ablation of LepRb from Nts neurons abrogated the leptin-mediated inhibition, demonstrating that LepRb(Nts) neurons mediate the inhibition of OX neurons by leptin. Leptin did not significantly enhance GABAA-mediated inhibitory synaptic transmission, and GABA receptor antagonists did not block leptin-mediated inhibition of OX neuron activity. Rather, leptin diminished the frequency of spontaneous EPSCs onto OX neurons. Furthermore, leptin indirectly activated an ATP-sensitive potassium (K(ATP)) channel in OX neurons, which was required for the hyperpolarization of OX neurons by leptin. Although Nts did not alter OX activity, galanin, which is coexpressed in LepRb(Nts) neurons, inhibited OX neurons, whereas the galanin receptor antagonist M40 (galanin-(1-12)-Pro3-(Ala-Leu)2-Ala amide) prevented the leptin-induced hyperpolarization of OX cells. These findings demonstrate that leptin indirectly inhibits OX neurons by acting on LHA LepRb(Nts) neurons to mediate two distinct GABA-independent mechanisms of inhibition: the presynaptic inhibition of excitatory neurotransmission and the opening of K(ATP) channels.


Assuntos
Região Hipotalâmica Lateral/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leptina/farmacologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Neurotensina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Antagonistas GABAérgicos/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Neuropeptídeos/genética , Neurotensina/genética , Orexinas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores para Leptina/deficiência
16.
Endocrinology ; 155(3): 748-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424041

RESUMO

Shifts in the composition of gut bacterial populations can alter host metabolism and may contribute to the pathogenesis of metabolic disorders, including obesity. Mice deficient in leptin action are obese with altered microbiota and increased susceptibility to certain intestinal pathogens. Because antimicrobial peptides (AMPs) secreted by Paneth cells represent a major mechanism by which the host influences the gut microbiome, we examined the mRNA expression of gut AMPs, several of which were decreased in leptin receptor (LepR)-deficient db/db mice, suggesting a potential role for AMP modulation of microbiota composition. To address the extent to which the alterations in gut microbiota and AMP mRNA expression in db/db mice result from increased food intake vs other defects in leptin action, we examined the effects of pair feeding and gut epithelial LepRb ablation on AMP mRNA expression and microbiota composition. We found that the phylum-level changes in fecal microbial content and AMP gene expression persist in pair-fed db/db mice, suggesting that these differences do not stem from hyperphagia alone. In addition, despite recent evidence to support a role for intestinal epithelial LepRb signaling in pathogen susceptibility, ablation of LepRb from the intestinal epithelium fails to alter body weight, composition of the microbiota, or AMP expression, suggesting a role for LepRb elsewhere for this regulation. Indeed, gut LepRb cells are not epithelial but rather constitute a previously uncharacterized population of perivascular cells within the intestinal submucosa. Overall, our data reveal a role for LepRb signaling extrinsic to the intestinal epithelium and independent of food intake in the control of the gut microbiome.


Assuntos
Regulação da Expressão Gênica , Hiperfagia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Leptina/metabolismo , Receptores para Leptina/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos , Ingestão de Alimentos , Entamoeba histolytica/metabolismo , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microbiota , RNA Mensageiro/metabolismo , Receptores para Leptina/genética , Transdução de Sinais
17.
Endocrinology ; 153(10): 4600-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22869346

RESUMO

The action of peripherally released leptin at long-form leptin receptors (LepRb) within the brain represents a fundamental axis in the regulation of energy homeostasis and body weight. Efforts to delineate the neuronal mediators of leptin action have recently focused on extrahypothalamic populations and have revealed that leptin action within the nucleus of the solitary tract (NTS) is critical for normal appetite and body weight regulation. To elucidate the neuronal circuits that mediate leptin action within the NTS, we employed multiple transgenic reporter lines to characterize the neurochemical identity of LepRb-expressing NTS neurons. LepRb expression was not detected in energy balance-associated NTS neurons that express cocaine- and amphetamine-regulated transcript, brain-derived neurotrophic factor, neuropeptide Y, nesfatin, catecholamines, γ-aminobutyric acid, prolactin-releasing peptide, or nitric oxide synthase. The population of LepRb-expressing NTS neurons was comprised of subpopulations marked by a proopiomelanocortin-enhanced green fluorescent protein (EGFP) transgene and distinct populations that express proglucagon and/or cholecystokinin. The significance of leptin action on these three populations of NTS neurons was assessed in leptin-deficient Ob/Ob mice, revealing increased NTS proglucagon and cholecystokinin, but not proopiomelanocortin, expression. These data provide new insight into the appetitive brainstem circuits engaged by leptin.


Assuntos
Peso Corporal/fisiologia , Neurônios/metabolismo , Receptores para Leptina/metabolismo , Núcleo Solitário/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colecistocinina/metabolismo , Metabolismo Energético/fisiologia , Leptina/metabolismo , Camundongos , Camundongos Transgênicos , Neuropeptídeo Y/metabolismo , Fosforilação , Pró-Opiomelanocortina/metabolismo , Proglucagon/metabolismo , Hormônio Liberador de Prolactina/metabolismo , Fator de Transcrição STAT3/metabolismo , Núcleo Solitário/citologia , Ácido gama-Aminobutírico/metabolismo
18.
Cell Metab ; 15(5): 703-12, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22560222

RESUMO

Irs2-mediated insulin/IGF1 signaling in the CNS modulates energy balance and glucose homeostasis; however, the site for Irs2 function is unknown. The hormone leptin mediates energy balance by acting on leptin receptor (LepR-b)-expressing neurons. To determine whether LepR-b neurons mediate the metabolic actions of Irs2 in the brain, we utilized Lepr(cre) together with Irs2(L/L) to ablate Irs2 expression in LepR-b neurons (Lepr(ΔIrs2)). Lepr(ΔIrs2) mice developed obesity, glucose intolerance, and insulin resistance. Leptin action was not altered in young Lepr(ΔIrs2) mice, although insulin-stimulated FoxO1 nuclear exclusion was reduced in Lepr(ΔIrs2) mice. Indeed, deletion of Foxo1 from LepR-b neurons in Lepr(ΔIrs2) mice normalized energy balance, glucose homeostasis, and arcuate nucleus gene expression. Thus, Irs2 signaling in LepR-b neurons plays a crucial role in metabolic sensing and regulation. While not required for leptin action, Irs2 suppresses FoxO1 signaling in LepR-b neurons to promote energy balance and metabolism.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Receptores para Leptina/metabolismo , Animais , Encéfalo/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Metabolismo Energético , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Expressão Gênica , Glucose/genética , Glucose/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Homeostase , Insulina/genética , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Resistência à Insulina/genética , Leptina/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptores para Leptina/genética , Transdução de Sinais
19.
Nat Med ; 18(5): 820-3, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22522563

RESUMO

Few effective measures exist to combat the worldwide obesity epidemic(1), and the identification of potential therapeutic targets requires a deeper understanding of the mechanisms that control energy balance. Leptin, an adipocyte-derived hormone that signals the long-term status of bodily energy stores, acts through multiple types of leptin receptor long isoform (LepRb)-expressing neurons (called here LepRb neurons) in the brain to control feeding, energy expenditure and endocrine function(2-4). The modest contributions to energy balance that are attributable to leptin action in many LepRb populations(5-9) suggest that other previously unidentified hypothalamic LepRb neurons have key roles in energy balance. Here we examine the role of LepRb in neuronal nitric oxide synthase (NOS1)-expressing LebRb (LepRb(NOS1)) neurons that comprise approximately 20% of the total hypothalamic LepRb neurons. Nos1(cre)-mediated genetic ablation of LepRb (Lepr(Nos1KO)) in mice produces hyperphagic obesity, decreased energy expenditure and hyperglycemia approaching that seen in whole-body LepRb-null mice. In contrast, the endocrine functions in Lepr(Nos1KO) mice are only modestly affected by the genetic ablation of LepRb in these neurons. Thus, hypothalamic LepRb(NOS1) neurons are a key site of action of the leptin-mediated control of systemic energy balance.


Assuntos
Metabolismo Energético , Hipotálamo/fisiologia , Leptina/fisiologia , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo I/fisiologia , Animais , Camundongos , Receptores para Leptina/fisiologia
20.
Mol Metab ; 1(1-2): 61-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24024119

RESUMO

Leptin action in the brain signals the repletion of adipose energy stores, suppressing feeding and permitting energy expenditure on a variety of processes, including reproduction. Leptin binding to its receptor (LepR-b) promotes the tyrosine phosphorylation of three sites on LepR-b, each of which mediates distinct downstream signals. While the signals mediated by LepR-b Tyr1138 and Tyr985 control important aspects of energy homeostasis and LepR-b signal attenuation, respectively, the role of the remaining LepR-b phosphorylation site (Tyr1077) in leptin action has not been studied. To examine the function of Tyr1077, we generated a "knock-in" mouse model expressing LepR-b (F1077), which is mutant for LepR-b Tyr1077. Mice expressing LepR-b (F1077) demonstrate modestly increased body weight and adiposity. Furthermore, females display impairments in estrous cycling. Our results suggest that signaling by LepR-b Tyr1077 plays a modest role in the control of metabolism by leptin, and is an important link between body adiposity and the reproductive axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...