Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 35(51): 16726-16733, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31786916

RESUMO

Environmentally persistent free radicals (EPFRs) are formed by the adsorption of substituted aromatic precursors on the surface of metal oxides and are known to have significant health and environmental impact due to their unique stability. In this article, the formation of EPFRs is studied by adsorption of phenol on ZnO, CuO, Fe2O3, and TiO2 nanoparticles (∼10-50 nm) at high temperatures. Electron paramagnetic resonance indicates the formation of phenoxyl-type radicals. Fourier transform infrared spectroscopy provides further evidence of EPFR formation by the disappearance of -OH groups, indicating the chemisorption of the organic precursor on the metal oxide surface. These results are further confirmed by inelastic neutron scattering, which shows both ring out-of-plane bend and C-H in-plane bend motions characteristic of phenol adsorption on the studied systems. Also, the changes in the oxidation state of the metal cations are investigated by X-ray photoelectron spectroscopy, which shows that the direction of electron transfer (redox) during phenol chemisorption is strongly dependent on surface properties as well as surface defects of the metal oxide surface.

2.
Chem Phys Lett ; 670: 5-10, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28824195

RESUMO

Environmentally persistent free radicals (EPFRs) have significant environmental and public health impacts. In this study, we demonstrate that EPFRs formed on ZnO nanoparticles provide two significant surprises. First, EPR spectroscopy shows that phenoxy radicals form readily on ZnO nanoparticles at room temperature, yielding EPR signals similar to those previously measured after 250°C exposures. Vibrational spectroscopy supports the conclusion that phenoxy-derived species chemisorb to ZnO nanoparticles under both exposure temperatures. Second, DFT calculations indicate that electrons are transferred from ZnO to the adsorbed organic (oxidizing the Zn), the opposite direction proposed by previous descriptions of EPFR formation on metal oxides.

3.
Chem Phys Lett ; 638: 56-60, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26388650

RESUMO

Environmentally persistent free radicals (EPFRs) are toxic organic/metal oxide composite particles that have been discovered to form from substituted benzenes chemisorbed to metal oxides. Here, we perform photoelectron spectroscopy, electron energy loss spectroscopy, and low energy electron diffraction of phenol chemisorbed to ZnO(1 0 1̱ 0) and (0 0 0 1̱)-Zn to observe electronic structure changes and charge transfer as a function adsorption temperature. We show direct evidence of charge transfer from the ZnO surfaces to the phenol. This evidence can help gain a better understanding of EPFRs and be used to develop possible future remediation strategies.

4.
Langmuir ; 31(13): 3869-75, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25774565

RESUMO

Environmentally persistent free radicals (EPFRs) are a class of composite organic/metal oxide pollutants that have recently been discovered to form from a wide variety of substituted benzenes chemisorbed to commonly encountered oxides. Although a qualitative understanding of EPFR formation on particulate metal oxides has been achieved, a detailed understanding of the charge transfer mechanism that must accompany the creation of an unpaired radical electron is lacking. In this study, we perform photoelectron spectroscopy and electron energy loss spectroscopy on a well-defined model system-phenol chemisorbed on TiO2(110) to directly observe changes in the electronic structure of the oxide and chemisorbed phenol as a function of adsorption temperature. We show strong evidence that, upon exposure at high temperature, empty states in the TiO2 are filled and the phenol HOMO is depopulated, as has been proposed in a conceptual model of EPFR formation. This experimental evidence of charge transfer provides a deeper understanding of the EPFR formation mechanism to guide future experimental and computational studies as well as potential environmental remediation strategies.


Assuntos
Fenol/química , Fenóis/química , Titânio/química , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia Fotoeletrônica
5.
Chem Phys ; 422: 277-282, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24443627

RESUMO

We have examined the formation of environmentally persistent free radicals (EPFRs) from phenol over alumina and titania using both powder and single-crystal samples. Electron paramagnetic resonance (EPR) studies of phenol adsorbed on metal oxide powders indicates radical formation on both titania and alumina, with both oxides forming one faster-decaying species (lifetime on the order of 50-100 hours) and one slower-decayng species (lifetimes on the order of 1000 hours or more). Electron energy loss spectroscopy (EELS) measurements comparing physisorbed phenol on single-crystal TiO2(110) to phenoxyl radicals on the same substrate indicate distinct changes in the π-π* transitions from phenol after radical formation. The identical shifts are observed from EELS studies of phenoxyl radicals on ultrathin alumina grown on NiAl(110), indicating that this shift in the π-π* transition may be taken as a general hallmark of phenoxyl radical formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA