Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38712817

RESUMO

Improved freshwater resource management requires the implementation of widespread, effective, and timely water quality monitoring. Conventional monitoring methods are often inhibited by financial, infrastructural, and human capacity limitations, especially in developing regions. This study aimed to validate the citizen-scientist-operated transparency or clarity tube (hereafter "clarity tube") for measuring water clarity as a proxy for total suspended solids (TSS) concentration, a critical quality metric in river systems and wastewater treatment works (WWTW) effluent in Southern Africa. Clarity tubes provided a relatively accurate and precise proxy for TSS in riverine lotic systems and WWTW effluent, revealing significant inverse log-linear relationships between clarity and TSS with r2 = 0.715 and 0.503, respectively. We demonstrate that clarity-derived estimates of TSS concentration (TSScde) can be used to estimate WWTW compliance with WWTW effluent TSS concentration regulations. The measurements can then be used to engage with WWTW management, potentially affecting WWTW performance. Overall, these findings demonstrate the usefulness of clarity tubes as low-cost, accessible, and easy-to-use citizen science tools for high spatial and temporal resolution water quality monitoring, not only in rivers in Southern Africa but also in WWTW effluent for estimating compliance, with strong global relevance to the sustainable development goals (SDGs). Integr Environ Assess Manag 2024;00:1-10. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

2.
Mol Ecol ; 28(16): 3709-3721, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31291502

RESUMO

Arid environments provide ideal ground for investigating the mechanisms of adaptive evolution. High temperatures and low water availability are relentless stressors for many endotherms, including birds; yet birds persist in deserts. While physiological adaptation probably involves metabolic phenotypes, the underlying mechanisms (plasticity, genetics) are largely uncharacterized. To explore this, we took an intraspecific approach that focused on a species that is resident over a mesic to arid gradient, the Karoo scrub-robin (Cercotrichas coryphaeus). Specifically, we integrated environmental (climatic and primary productivity), physiological (metabolic rates: a measure of energy expenditure), genotypic (genetic variation underlying the machinery of energy production) and microbiome (involved in processing food from where energy is retrieved) data, to infer the mechanism of physiological adaptation. We that found the variation in energetic physiology phenotypes and gut microbiome composition are associated with environmental features as well as with variation in genes underlying energy metabolic pathways. Specifically, we identified a small list of candidate adaptive genes, some of them with known ties to relevant physiology phenotypes. Together our results suggest that selective pressures on energetic physiology mediated by genes related to energy homeostasis and possibly microbiota composition may facilitate adaptation to local conditions and provide an explanation to the high avian intraspecific divergence observed in harsh environments.


Assuntos
Adaptação Fisiológica , Clima Desértico , Passeriformes/fisiologia , Animais , Metabolismo Basal , Microbioma Gastrointestinal , Interação Gene-Ambiente , Estudos de Associação Genética , Genética Populacional , Genótipo , Fenótipo , África do Sul
3.
Physiol Behav ; 179: 268-275, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28663111

RESUMO

Many arid-zone animals have to forage under extremely hot conditions to maintain water and energy balance. The effect of high air temperatures (Tair) on the behavioral patterns of small endothermic animals-characterized by their high energy and water demands-will provide a valuable framework for understanding species vulnerability to climate warming. We determined the seasonal behavioral responses to changes in Tair in a~10-g arid-zone passerine, the rufous-eared warbler (Malcorus pectoralis), in the Karoo semi-desert, South Africa. Rufous-eared warblers showed significant temperature-dependence in their behavior in summer, but not in winter. During summer, the warblers frequently experienced Tair exceeding 40°C in the shade. For all observations <26°C compared to >36°C, the warblers showed reductions in preening (40% decrease), foraging effort (56% decrease), and foraging success (15% decrease), as well as a significant increase in time spent engaged in evaporative cooling behavior. Moreover, as Tair increased the warblers shifted increasingly off the ground and out of the full sun, into microsites in the shade (131% increase) and in shrubs (23% increase). In this regard, behavior varied seasonally, with the time spent in the shade 23% higher, and foraging effort 28% higher, in summer compared to winter across a range of moderate Tair (15-30°C). Our findings emphasize the link between behavior and temperature in small birds inhabiting hot, arid environments, as well as the importance of understanding these responses for predicting biologically meaningful responses (and hence, vulnerability) of arid-zone avian communities to climactic shifts.


Assuntos
Comportamento Animal , Clima Desértico , Temperatura Alta , Estações do Ano , Aves Canoras/fisiologia , Animais , Comportamento Animal/fisiologia , Regulação da Temperatura Corporal , Mudança Climática , Modelos Logísticos , África do Sul , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...