Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 272: 125810, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387374

RESUMO

Matrix effects can affect detection limits, precision, and accuracy and lead to signal enhancement or suppression effects in gas chromatography analysis. Analyte protectants, such as shikimic acid and gluconolactone, can imitate the effect of matrix components and reduce the differences in matrix effect between samples. This study aimed to investigate the ability of analyte protectants to enhance gas chromatography detector signals of different oxygenated-polycyclic aromatic hydrocarbons. Addition of 100 µg L-1 shikimic acid and 200 µg L-1 gluconolactone effectively enhanced detector response of the investigated target compounds. Addition of a higher content of analyte protectants did not result in any further enhancement. It was found that between four and eleven consecutive injections of a standard solution with analyte protectants were required to obtain a stable compound response. The long-term signal stability was then maintained with subsequent injections, though an overall negative drift of the system was observed over the sequence of 200 investigated injections. Analysis of the actual sample matrix instead of standards in pure solvent, as presented in this study, could also be a way to minimize the required number of injections. Shikimic acid and gluconolactone were first and foremost able to enhance signals of oxygenated-polycyclic aromatic hydrocarbons with similar functional groups (hydroxyl) in their molecular structure. It can be relevant to consider alternative analyte protectants with different functional groups according to the type of target compounds investigated.

2.
Anal Chem ; 96(1): 229-237, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38128072

RESUMO

Quantitative nontarget analysis (qNTA) for liquid chromatography coupled to high-resolution mass spectrometry enables a more comprehensive assessment of environmental samples. Previous studies have shown that correlations between a compound's ionization efficiency and a range of molecular descriptors can predict the compound's concentration within a factor of 5. In this study, the qNTA approach was further improved by considering all mass adducts instead of only the protonated ion. The model was based on a quantitative structure-property relationship (QSPR), including 216 contaminants of emerging concern (CECs), of which 80 exhibited adduct formation that accounted for >10% of the total peak intensity. When all mass adducts were included, the test set coefficient of determination improved to Q2 = 0.855 compared to Q2 = 0.670 when only the protonated ions were considered (test set median RF error factor 1.6). The inclusion of all adducts was also important to transfer the RF QSPR model reliably. It was assumed that RF variations are sequence-dependent; therefore, a second QSPR model for the prediction of the transferability factor was built for each sequence. For validation, samples were analyzed up to two years apart. The median prediction fold change was 1.74 for analytical standards (63 compounds) and 2.4 for enriched wastewater effluent samples (41 compounds), with 80% of the compounds predicted within a fold change of 2.4 and 3.3, respectively. The model was also validated on a second instrument, where 80% of the 26 compounds in wastewater effluent were predicted within a factor of 3.8.

3.
Phytochemistry ; 213: 113742, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37269935

RESUMO

Phytoalexins are antimicrobial plant metabolites elicited by microbial attack or abiotic stress. We investigated phytoalexin profiles after foliar abiotic elicitation in the crucifer Barbarea vulgaris and interactions with the glucosinolate-myrosinase system. The treatment for abiotic elicitation was a foliar spray with CuCl2 solution, a usual eliciting agent, and three independent experiments were carried out. Two genotypes of B. vulgaris (G-type and P-type) accumulated the same three major phytoalexins in rosette leaves after treatment: phenyl-containing nasturlexin D and indole-containing cyclonasturlexin and cyclobrassinin. Phytoalexin levels were investigated daily by UHPLC-QToF MS and tended to differ among plant types and individual phytoalexins. In roots, phytoalexins were low or not detected. In treated leaves, typical total phytoalexin levels were in the range 1-10 nmol/g fresh wt. during three days after treatment while typical total glucosinolate (GSL) levels were three orders of magnitude higher. Levels of some minor GSLs responded to the treatment: phenethylGSL (PE) and 4-substituted indole GSLs. Levels of PE, a suggested nasturlexin D precursor, were lower in treated plants than controls. Another suggested precursor GSL, 3-hydroxyPE, was not detected, suggesting PE hydrolysis to be a key biosynthetic step. Levels of 4-substituted indole GSLs differed markedly between treated and control plants in most experiments, but not in a consistent way. The dominant GSLs, glucobarbarins, are not believed to be phytoalexin precursors. We observed statistically significant linear correlations between total major phytoalexins and the glucobarbarin products barbarin and resedine, suggesting that GSL turnover for phytoalexin biosynthesis was unspecific. In contrast, we did not find correlations between total major phytoalexins and raphanusamic acid or total glucobarbarins and barbarin. In conclusion, two groups of phytoalexins were detected in B. vulgaris, apparently derived from the GSLs PE and indol-3-ylmethylGSL. Phytoalexin biosynthesis was accompanied by depletion of the precursor PE and by turnover of major non-precursor GSLs to resedine. This work paves the way for identifying and characterizing genes and enzymes in the biosyntheses of phytoalexins and resedine.


Assuntos
Barbarea , Fitoalexinas , Barbarea/química , Barbarea/classificação , Barbarea/genética , Barbarea/metabolismo , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/metabolismo , Genótipo , Glucosinolatos/química , Glucosinolatos/isolamento & purificação , Glucosinolatos/metabolismo , Indóis/metabolismo , Fitoalexinas/biossíntese , Fitoalexinas/química , Fitoalexinas/isolamento & purificação , Fitoalexinas/metabolismo
4.
J Chromatogr A ; 1683: 463548, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36219970

RESUMO

This work builds upon recent developments in the field of second dimensional (2D) retention indices (RI) for use in comprehensive two-dimensional gas chromatography (GC×GC), expanding application to the most commonly used "normal" orthogonality column configuration, where 2D RI are rarely employed. Initially, one dimensional retention indices for 80 wastewater pollutants were determined by GC-MS on a mid-polar ZB-50 column. In order to determine the 2D RIs for peaks detected in wastewater extracts separated by GC×GC -MS, a single injection of a ten-compound standard mix allowed the construction of model-generated isovolatility curves. These curves were used for the determination of 2D RIs of compounds initially identified on the basis of the mass spectral match factor and 1D RIs. Good agreements (average deviation of 1.7%) were observed between the calculated 2D RIs and the measured reference RIs for these compounds. These results show that this approach provides an additional level of confidence for the identification of compounds detected in GC×GC-MS and demonstrates the potential of this approach for improved compound identification in non-targeted analysis.


Assuntos
Poluentes Ambientais , Águas Residuárias , Cromatografia Gasosa/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos
5.
J Agric Food Chem ; 70(4): 1134-1147, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35061395

RESUMO

The glucosinolate (GSL) profiles of four Limnanthaceae species, including the oil crop Limnanthes alba (meadowfoam), were investigated by an ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QToF-MS/MS) analysis of desulfoGSLs after desulfation of native GSLs, supplemented by NMR of desulfated 2-hydroxy-2-methylpropylGSL and 3-methoxybenzylGSL. Leaves, roots, and seeds were investigated, providing an overview of biosynthetic capabilities in the genera Floerkea and Limnanthes. Methoxyl groups on benzylGSLs were in meta but not para positions; two 3,5-disubstituted benzylGSLs are tentatively proposed. 2-Hydroxy-2-methylpropylGSL was accompanied by an isomer that was not a previously reported GSL. The combined GSL profile of the family included GSLs derived from valine, leucine, isoleucine, phenylalanine, and tyrosine, and possibly methionine and tryptophan. Substituted indole GSLs and GSLs derived from chain-elongated amino acids or alanine were searched for but not detected. Hypothetic glycosides of GSLs were detected at low levels. Based on biochemical interpretation, we suggest biosynthetic schemes and gene families (CYP79C, GSOH) relevant for tailoring GSL profiles in Limnanthes crops.


Assuntos
Glucosinolatos , Magnoliopsida , Cromatografia Líquida de Alta Pressão , Humanos , Sementes , Espectrometria de Massas em Tandem
6.
Metabolites ; 11(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34822389

RESUMO

Root mutualistic microbes can modulate the production of plant secondary metabolites affecting plant-herbivore interactions. Still, the main mechanisms underlying the impact of root mutualists on herbivore performance remain ambiguous. In particular, little is known about how changes in the plant metabolome induced by root mutualists affect the insect metabolome and post-larval development. By using bioassays with tomato plants (Solanum lycopersicum), we analyzed the impact of the arbuscular mycorrhizal fungus Rhizophagus irregularis and the growth-promoting fungus Trichoderma harzianum on the plant interaction with the specialist insect herbivore Manduca sexta. We found that root colonization by the mutualistic microbes impaired insect development, including metamorphosis. By using untargeted metabolomics, we found that root colonization by the mutualistic microbes altered the secondary metabolism of tomato shoots, leading to enhanced levels of steroidal glycoalkaloids. Untargeted metabolomics further revealed that root colonization by the mutualists affected the metabolome of the herbivore, leading to an enhanced accumulation of steroidal glycoalkaloids and altered patterns of fatty acid amides and carnitine-derived metabolites. Our results indicate that the changes in the shoot metabolome triggered by root mutualistic microbes can cascade up altering the metabolome of the insects feeding on the colonized plants, thus affecting the insect development.

7.
Anal Chem ; 93(24): 8432-8441, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34096716

RESUMO

Matrix effects are well-known challenges for accurate and comparable measurements with liquid chromatography (LC) electrospray ionization mass spectrometry (ESI-MS). This study describes a three-step method to evaluate and compensate for matrix effects in enriched wastewater extracts using LC ESI-high-resolution MS (HRMS). As a first step, the "dilute and shoot" approach was used to determine the optimal relative enrichment factor (REF) for a direct comparison between wastewater influent (REF 10) and effluent (REF 50) extracts. However, the rapid decrease in the number of non-target compounds detected with increasing dilution leads to the need for a correction of the matrix effect for analyzing samples with higher REFs. As a second step, the observed matrix effect at higher REFs was corrected by the retention time-dependent matrix effect. A new scaling (TiChri scale) of the matrix effect was introduced, which demonstrates that the total ion chromatogram (TIC) predicts the matrix effect as effectively as post-column infusion (PCI) approaches; thus, the average median matrix effect was improved from -65 to 1% for influent (REF 100) and from -46 to -2% for effluent extracts (REF 250). The TIC traces for concentrated (REF 250) influent and effluent samples were successfully used to correct the matrix effects and allowed the extent of micropollutant degradation in three WWTPs to be quantified. As a final step, the residual structure-specific matrix effect was predicted and corrected by quantitative structure-property relationships (QSPR), which led to a further correction of the matrix effect to 0 ± 7% for 65 compounds.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Poluentes Químicos da Água , Cromatografia Líquida , Águas Residuárias/análise , Poluentes Químicos da Água/análise
8.
Phytochemistry ; 185: 112658, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33744557

RESUMO

A library of ion trap MS2 spectra and HPLC retention times reported here allowed distinction in plants of at least 70 known glucosinolates (GSLs) and some additional proposed GSLs. We determined GSL profiles of selected members of the tribe Cardamineae (Brassicaceae) as well as Reseda (Resedaceae) used as outgroup in evolutionary studies. We included several accessions of each species and a range of organs, and paid attention to minor peaks and GSLs not detected. In this way, we obtained GSL profiles of Barbarea australis, Barbarea grayi, Planodes virginica selected for its apparent intermediacy between Barbarea and the remaining tribe and family, and Rorippa sylvestris and Nasturtium officinale, for which the presence of acyl derivatives of GSLs was previously untested. We also screened Armoracia rusticana, with a remarkably diverse GSL profile, the emerging model species Cardamine hirsuta, for which we discovered a GSL polymorphism, and Reseda luteola and Reseda odorata. The potential for aliphatic GSL biosynthesis in Barbarea vulgaris was of interest, and we subjected P-type and G-type B. vulgaris to several induction regimes in an attempt to induce aliphatic GSL. However, aliphatic GSLs were not detected in any of the B. vulgaris types. We characterized the investigated chemotypes phylogenetically, based on nuclear rDNA internal transcribed spacer (ITS) sequences, in order to understand their relation to the species B. vulgaris in general, and found them to be representative of the species as it occurs in Europe, as far as documented in available ITS-sequence repositories. In short, we provide GSL profiles of a wide variety of tribe Cardamineae plants and conclude aliphatic GSLs to be absent or below our limit of detection in two major evolutionary lines of B. vulgaris. Concerning analytical chemistry, we conclude that availability of authentic reference compounds or reference materials is critical for reliable GSL analysis and characterize two publicly available reference materials: seeds of P. virginica and N. officinale.


Assuntos
Barbarea , Brassicaceae , Resedaceae , Barbarea/genética , Brassicaceae/genética , Cromatografia Líquida de Alta Pressão , Europa (Continente) , Glucosinolatos , Filogenia , Espectrometria de Massas em Tandem
9.
J Chem Ecol ; 47(4-5): 476-488, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33740175

RESUMO

Entomopathogenic fungi (EPF) can be experimentally established in several plant species as endophytes. Ecological effects of EPF inoculations on plant growth and plant-herbivore interactions have been demonstrated, potentially by altering plant physiological responses. However, the role of these responses in plant-fungus-herbivore tripartite interactions has not been well elucidated. Steroidal glycoalkaloids (SGAs) are plant specialized metabolites with bioactive properties against arthropod herbivores. Here, the effects of seed treatments by three EPF isolates, representing Beauveria bassiana, Metarhizium brunneum, and M. robertsii, on population growth of two-spotted spider mites (Tetranychus urticae Koch) were evaluated on tomato (Solanum lycopersicum). The levels of two SGAs, α-tomatine and dehydrotomatine, were determined in tomato leaves by LC-MS with and without T. urticae infestations after EPF inoculations. Interestingly, the population growth of T. urticae was significantly highest with M. brunneum and lowest with M. robertsii and B. bassiana at 15 days after infestation. Overall there was a significant negative correlation between SGAs content and the number of T. urticae. The levels of SGAs were significantly induced by T. urticae presence in all treatments, while only M. robertsii showed significantly higher levels of SGAs than M. brunneum and control in one of two experiments. Contrastingly, the effects on SGAs accumulation and population growth of T. urticae did not directly correlate with EPF endophytic colonization patterns of the inoculated plants. This study suggests a link between ecological effects and physiological responses mediated by EPF inoculations and T. urticae infestation with potential implications for plant protection.


Assuntos
Alcaloides/química , Extratos Vegetais/química , Folhas de Planta/química , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Animais , Beauveria/metabolismo , Evolução Biológica , Produtos Agrícolas/microbiologia , Produtos Agrícolas/parasitologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Herbivoria , Metarhizium/metabolismo , Controle Biológico de Vetores , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Crescimento Demográfico , Sementes/metabolismo , Tetranychidae
10.
Free Radic Biol Med ; 155: 58-68, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32439383

RESUMO

Selenium compounds have been identified as potential oxidant scavengers for biological applications due to the nucleophilicity of Se, and the ease of oxidation of the selenium centre. Previous studies have reported apparent second order rate constants for a number of oxidants (e.g. HOCl, ONOOH) with some selenium species, but these data are limited. Here we provide apparent second order rate constants for reaction of selenols (RSeH), selenides (RSeR') and diselenides (RSeSeR') with biologically-relevant oxidants (HOCl, H2O2, other peroxides) as well as overall consumption data for the excited state species singlet oxygen (1O2). Selenols show very high reactivity with HOCl and 1O2, with rate constants > 108 M-1 s-1, whilst selenides and diselenides typically react with rate constants one- (selenides) or two- (diselenides) orders of magnitude slower. Rate constants for reaction of diselenides with H2O2 and other hydroperoxides are much slower, with k for H2O2 being <1 M-1 s-1, and for amino acid and peptide hydroperoxides ~102 M-1 s-1. The rate constants determined for HOCl and 1O2 with these selenium species are greater than, or similar to, rate constants for amino acid side chains on proteins, including the corresponding sulfur-centered species (Cys and Met), suggesting that selenium containing compounds may be effective oxidant scavengers. Some of these reactions may be catalytic in nature due to ready recycling of the oxidized selenium species. These data may aid the development of highly efficacious, and catalytic, oxidant scavengers.


Assuntos
Compostos de Selênio , Selênio , Peróxido de Hidrogênio , Ácido Hipocloroso , Cinética , Oxidantes , Oxirredução
11.
Free Radic Biol Med ; 154: 62-74, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32370994

RESUMO

Disulfide bonds play a key role in stabilizing proteins by cross-linking secondary structures. Whilst many disulfides are effectively unreactive, it is increasingly clear that some disulfides are redox active, participate in enzymatic reactions and/or regulate protein function by allosteric mechanisms. Previously (Karimi et al., Sci. Rep. 2016, 6, 38752) we have shown that some disulfides react rapidly with biological oxidants due to favourable interactions with available lone-pairs of electrons. Here we present data from kinetic, mechanistic and product studies for HOCl-mediated oxidation of a protected nine-amino acid model peptide containing a N- to C-terminal disulfide bond. This peptide reacts with HOCl with k2 1.8 × 106 M-1 s-1, similar to other highly-reactive disulfide-containing compounds. With low oxidant excesses, oxidation yields multiple oxidation products from the disulfide, with reaction predominating at the N-terminal Cys to give sulfenic, sulfinic and sulfonic acids, and disulfide bond cleavage. Limited oxidation occurs, with higher oxidant excesses, at Trp and His residues to give mono- and di- (for Trp) oxygenated products. Site-specific backbone cleavage also occurs between Arg and Trp, probably via initial side-chain modification. Treatment of the previously-oxidised peptide with thiols (GSH, N-Ac-Cys), results in adduction of the thiol to the oxidised peptide, with this occurring at the original disulfide bond. This gives an open-chain peptide, and a new mixed disulfide containing GSH or N-Ac-Cys as determined by mass spectrometry. Disulfide bond oxidation may therefore markedly alter the structure, activity and function of disulfide-containing proteins, and provides a potential mechanism for protein glutathionylation.


Assuntos
Cistina , Dissulfetos , Oxirredução , Oxigênio , Peptídeos , Compostos de Sulfidrila
12.
Chem Res Toxicol ; 32(3): 513-525, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30693765

RESUMO

Hypochlorous acid (HOCl) is a highly reactive, toxic species generated by neutrophils via the action of myeloperoxidase in order to destroy invading pathogens. However, when HOCl is produced inappropriately, it can damage host tissue and proteins and plays a role in the initiation and progression of disease. Carnosine, a peptide of ß-alanine and histidine, has been shown to react rapidly with HOCl yielding monochloramines and can undergo intramolecular transchlorination. The current study examines the kinetics and pH dependence of the reactions of carnosine and novel structural derivatives with HOCl and the occurrence of intra- and intermolecular transchlorination processes. We demonstrate that the transchlorination reactions of carnosine are pH dependent, with intramolecular transfer favored at higher pH. Carcinine, having a structure identical to carnosine though lacking the carboxylic acid group of the histidine residue, reacts with HOCl and forms monochloramines though intramolecular transfer reactions are not observed, and this is supported by computational modeling. Novel analogues with one (carnosine+1) and two (carnosine+2) methylene groups in the alkyl chain of the ß-alanine react with HOCl to yield monochloramines that undergo transchlorinations to yield a mixture of mono- and dichloramines. The latter are stable over 24 h. The ability of carnosine and derivatives to react rapidly with HOCl to give long-lived, poorly reactive, species may prevent damage to proteins and other targets at sites of inflammation.


Assuntos
Carnosina/análogos & derivados , Carnosina/química , Cloraminas/química , Cloraminas/síntese química , Ácido Hipocloroso/química , Cinética , Estrutura Molecular
13.
Free Radic Biol Med ; 118: 126-136, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29496618

RESUMO

Oxidative damage is a common process in many biological systems and proteins are major targets for damage due to their high abundance and very high rate constants for reaction with many oxidants (both radicals and two-electron species). Tryptophan (Trp) residues on peptides and proteins are a major sink for a large range of biological oxidants as these side-chains have low radical reduction potentials. The resulting Trp-derived indolyl radicals (Trp•) have long lifetimes in some circumstances due to their delocalized structures, and undergo only slow reaction with molecular oxygen, unlike most other biological radicals. In contrast, we have shown previously that Trp• undergo rapid dimerization. In the current study, we show that Trp• also undergo very fast reaction with superoxide radicals, O2•-, with k 1-2 × 109 M-1 s-1. These values do not alter dramatically with peptide structure, but the values of k correlate with overall peptide positive charge, consistent with positive electrostatic interactions. These reactions compete favourably with Trp• dimerization and O2 addition, indicating that this may be a major fate in some circumstances. The Trp• + O2•- reactions occur primarily by addition, rather than electron transfer, with this resulting in high yields of Trp-derived hydroperoxides. Subsequent degradation of these species, both stimulated and native decay, gives rise to N-formylkynurenine, kynurenine, alcohols and diols. These data indicate that reaction of O2•- with Trp• should be considered as a major pathway to Trp degradation on peptides and proteins subjected to oxidative damage.


Assuntos
Radicais Livres/química , Peróxido de Hidrogênio/química , Estresse Oxidativo/fisiologia , Superóxidos/química , Triptofano/química , Oxirredução , Peptídeos/química
14.
Free Radic Biol Med ; 113: 132-142, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28962874

RESUMO

Free radicals are produced during physiological processes including metabolism and the immune response, as well as on exposure to multiple external stimuli. Many radicals react rapidly with proteins resulting in side-chain modification, backbone fragmentation, aggregation, and changes in structure and function. Due to its low oxidation potential, the indole ring of tryptophan (Trp) is a major target, with this resulting in the formation of indolyl radicals (Trp•). These undergo multiple reactions including ring opening and dimerization which can result in protein aggregation. The factors that govern Trp• dimerization, the rate constants for these reactions and the exact nature of the products are not fully elucidated. In this study, second-order rate constants were determined for Trp• dimerization in Trp-containing peptides to be 2-6 × 108M-1s-1 by pulse radiolysis. Peptide charge and molecular mass correlated negatively with these rate constants. Exposure of Trp-containing peptides to steady-state radiolysis in the presence of NaN3 resulted in consumption of the parent peptide, and detection by LC-MS of up to 4 different isomeric Trp-Trp cross-links. Similar species were detected with other oxidants, including CO3•- (from the HCO3- -dependent peroxidase activity of bovine superoxide dismutase) and peroxynitrous acid (ONOOH) in the presence or absence of HCO3-. Trp-Trp species were also isolated and detected after alkaline hydrolysis of the oxidized peptides and proteins. These studies demonstrate that Trp• formed on peptides and proteins undergo rapid recombination reactions to form Trp-Trp cross-linked species. These products may serve as markers of radical-mediated protein damage, and represent an additional pathway to protein aggregation in cellular dysfunction and disease.


Assuntos
Dimerização , Triptofano/química , Cromatografia Líquida , Radicais Livres/química , Oxirredução , Peptídeos/análise , Peptídeos/química , Proteínas/análise , Proteínas/química , Radiólise de Impulso , Espectrometria de Massas em Tandem
15.
Redox Biol ; 12: 872-882, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28458184

RESUMO

Myeloperoxidase produces strong oxidants during the immune response to destroy invading pathogens. However, these oxidants can also cause tissue damage, which contributes to the development of numerous inflammatory diseases. Selenium containing compounds, including selenomethionine (SeMet) and 1,4-anhydro-5-seleno-D-talitol (SeTal), react rapidly with different MPO-derived oxidants to form the respective selenoxides (SeMetO and SeTalO). This study investigates the susceptibility of these selenoxides to undergo reduction back to the parent compounds by intracellular reducing systems, including glutathione (GSH) and the glutathione reductase and thioredoxin reductase systems. GSH is shown to reduce SeMetO and SeTalO, with consequent formation of GSSG with apparent second order rate constants, k2, in the range 103-104M-1s-1. Glutathione reductase reduces both SeMetO and SeTalO at the expense of NADPH via formation of GSSG, whereas thioredoxin reductase acts only on SeMetO. The presence of SeMet and SeTal also increased the rate at which NADPH was consumed by the glutathione reductase system in the presence of N-chloramines. In contrast, the presence of SeMet and SeTal reduced the rate of NADPH consumption by the thioredoxin reductase system after addition of N-chloramines, consistent with the rapid formation of selenoxides, but only slow reduction by thioredoxin reductase. These results support a potential role of seleno compounds to act as catalytic scavengers of MPO-derived oxidants, particularly in the presence of glutathione reductase and NADPH, assuming that sufficient plasma levels of the parent selenoether can be achieved in vivo following supplementation.


Assuntos
Cloraminas/química , Glutationa Redutase/metabolismo , Glutationa/metabolismo , Compostos de Selênio/química , Compostos de Sulfidrila/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Catálise , Hexoses/química , Cinética , NADP/química , Compostos Organosselênicos/química , Oxirredução , Selenometionina/química
16.
Sci Rep ; 6: 38572, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941824

RESUMO

Disulfide bonds play a key role in stabilizing protein structures, with disruption strongly associated with loss of protein function and activity. Previous data have suggested that disulfides show only modest reactivity with oxidants. In the current study, we report kinetic data indicating that selected disulfides react extremely rapidly, with a variation of 104 in rate constants. Five-membered ring disulfides are particularly reactive compared with acyclic (linear) disulfides or six-membered rings. Particular disulfides in proteins also show enhanced reactivity. This variation occurs with multiple oxidants and is shown to arise from favorable electrostatic stabilization of the incipient positive charge on the sulfur reaction center by remote groups, or by the neighboring sulfur for conformations in which the orbitals are suitably aligned. Controlling these factors should allow the design of efficient scavengers and high-stability proteins. These data are consistent with selective oxidative damage to particular disulfides, including those in some proteins.


Assuntos
Dissulfetos/química , Proteínas/química , Elétrons , Humanos , Ácido Hipocloroso/química , Insulina/química , Cinética , Lactalbumina/química , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica
17.
Food Chem ; 199: 36-41, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26775941

RESUMO

Competitive kinetics were applied as a tool to determine apparent rate constants for the reduction of hypervalent haem pigment ferrylmyoglobin (MbFe(IV)O) by proteins and phenols in aqueous solution of pH 7.4 and I=1.0 at 25°C. Reduction of MbFe(IV)O by a myofibrillar protein isolate (MPI) from pork resulted in kMPI=2.2 ± 0.1 × 10(4)M(-1)s(-1). Blocking of the protein thiol groups on the MPI by N-ethylmaleimide (NEM) markedly reduced this rate constant to kMPI-NEM=1.3 ± 0.4 × 10(3)M(-1)s(-1) consistent with a key role for the Cys residues on MPI as targets for haem protein-mediated oxidation. This approach allows determination of apparent rate constants for the oxidation of proteins by haem proteins of relevance to food oxidation and should be applicable to other systems. A similar approach has provided approximate apparent rate constants for the reduction of MbFe(IV)O by catechin and green tea extracts, though possible confounding reactions need to be considered. These kinetic data suggest that small molar excesses of some plant extracts relative to the MPI thiol concentration should afford significant protection against MbFe(IV)O-mediated oxidation.


Assuntos
Metamioglobina/química , Extratos Vegetais/farmacologia , Catequina/farmacologia , Cisteína/química , Etilmaleimida/farmacologia , Cinética , Carne , Oxirredução , Chá
18.
Free Radic Biol Med ; 90: 195-205, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26616646

RESUMO

Phosphorylation of protein tyrosine residues is critical to cellular processes, and is regulated by kinases and phosphatases (PTPs). PTPs contain a redox-sensitive active site Cys residue, which is readily oxidized. Myeloperoxidase, released from activated leukocytes, catalyzes thiocyanate ion (SCN(-)) oxidation by H2O2 to form hypothiocyanous acid (HOSCN), an oxidant that targets Cys residues. Dysregulated phosphorylation and elevated MPO levels have been associated with chronic inflammatory diseases where HOSCN can be generated. Previous studies have shown that HOSCN inhibits isolated PTP1B and induces cellular dysfunction in cultured macrophage-like cells. The present study extends this previous work and shows that physiologically-relevant concentrations of HOSCN alter the activity and structure of other members of the wider PTP family (including leukocyte antigen-related PTP, PTP-LAR; T-cell PTP, TC-PTP; CD45 and Src homology phosphatase-1, Shp-1) by targeting Cys residues. Isolated PTP activity, and activity in lysates of human monocyte-derived macrophages (HMDM) was inhibited by 0-100 µM HOSCN with this being accompanied by reversible oxidation of Cys residues, formation of sulfenic acids or sulfenyl-thiocyanates (detected by Western blotting, and LC-MS as dimedone adducts), and structural changes. LC-MS/MS peptide mass-mapping has provided data on the modified Cys residues in PTP-LAR. This study indicates that inflammation-induced oxidants, and particularly myeloperoxidase-derived species, can modulate the activity of multiple members of the PTP superfamily via oxidation of Cys residues to sulfenic acids. This alteration of the balance of PTP/kinase activity may perturb protein phosphorylation and disrupt cell signaling with subsequent induction of apoptosis at sites of inflammation.


Assuntos
Cisteína/metabolismo , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Tiocianatos/farmacologia , Sequência de Aminoácidos , Células Cultivadas , Humanos , Dados de Sequência Molecular , Oxirredução
19.
Free Radic Biol Med ; 89: 1049-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26524402

RESUMO

Peroxynitrite (the physiological mixture of ONOOH and its anion, ONOO(-)) is a powerful biologically-relevant oxidant capable of oxidizing and damaging a range of important targets including sulfides, thiols, lipids, proteins, carbohydrates and nucleic acids. Excessive production of peroxynitrite is associated with several human pathologies including cardiovascular disease, ischemic-reperfusion injury, circulatory shock, inflammation and neurodegeneration. This study demonstrates that low-molecular-mass selenols (RSeH), selenides (RSeR') and to a lesser extent diselenides (RSeSeR') react with peroxynitrite with high rate constants. Low molecular mass selenols react particularly rapidly with peroxynitrite, with second order rate constants k2 in the range 5.1 × 10(5)-1.9 × 10(6)M(-1)s(-1), and 250-830 fold faster than the corresponding thiols (RSH) and many other endogenous biological targets. Reactions of peroxynitrite with selenides, including selenosugars are approximately 15-fold faster than their sulfur homologs with k2 approximately 2.5 × 10(3)M(-1)s(-1). The rate constants for diselenides and sulfides were slower with k2 0.72-1.3 × 10(3)M(-1)s(-1) and approximately 2.1 × 10(2)M(-1)s(-1) respectively. These studies demonstrate that both endogenous and exogenous selenium-containing compounds may modulate peroxynitrite-mediated damage at sites of acute and chronic inflammation, with this being of particular relevance at extracellular sites where the thiol pool is limited.


Assuntos
Oxidantes/química , Ácido Peroxinitroso/química , Compostos de Selênio/química , Compostos de Enxofre/química , Humanos , Cinética , Oxidantes/metabolismo , Ácido Peroxinitroso/metabolismo , Compostos de Selênio/metabolismo , Compostos de Enxofre/metabolismo
20.
Free Radic Biol Med ; 84: 279-288, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25841785

RESUMO

Hypochlorous acid (HOCl) and N-chloramines are produced by myeloperoxidase (MPO) as part of the immune response to destroy invading pathogens. However, MPO also plays a detrimental role in inflammatory pathologies, including atherosclerosis, as inappropriate production of oxidants, including HOCl and N-chloramines, causes damage to host tissue. Low molecular mass thiol compounds, including glutathione (GSH) and methionine (Met), have demonstrated efficacy in scavenging MPO-derived oxidants, which prevents oxidative damage in vitro and ex vivo. Selenium species typically have greater reactivity toward oxidants compared to the analogous sulfur compounds, and are known to be efficient scavengers of HOCl and other hypohalous acids produced by MPO. In this study, we examined the efficacy of a number of sulfur and selenium compounds to scavenge a range of biologically relevant N-chloramines and oxidants produced by both isolated MPO and activated neutrophils and characterized the resulting selenium-derived oxidation products in each case. A dose-dependent decrease in the concentration of each N-chloramine was observed on addition of the sulfur compounds (cysteine, methionine) and selenium compounds (selenomethionine, methylselenocysteine, 1,4-anhydro-4-seleno-L-talitol, 1,5-anhydro-5-selenogulitol) studied. In general, selenomethionine was the most reactive with N-chloramines (k2 0.8-3.4×10(3)M(-1) s(-1)) with 1,5-anhydro-5-selenogulitol and 1,4-anhydro-4-seleno-L-talitol (k2 1.1-6.8×10(2)M(-1) s(-1)) showing lower reactivity. This resulted in the formation of the respective selenoxides as the primary oxidation products. The selenium compounds demonstrated greater ability to remove protein N-chloramines compared to the analogous sulfur compounds. These reactions may have implications for preventing cellular damage in vivo, particularly under chronic inflammatory conditions.


Assuntos
Sequestradores de Radicais Livres/química , Oxidantes/química , Peroxidase/química , Compostos de Selênio/química , Cloraminas/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...